AD-ALO4 212

UNCLASSIFIED

INTERNATIONAL BUSINESS SERVICES INC wASHINGTON DC F/6 972 !
SOFTWARE LIFE CYCLE MANAGEMENT WORKSHOP (2ND) AUGUST 21-22, 197==ETC(U)

AUG 78 V R BASILI+ E H ELY
T78CH1390~4C

DAAK70=78=D-0030
NL

ELECTE ™)

SEP 10 1981ﬂ

D

:

]

Sg
o
L] !
8
3;

* .

ITOAD 34IT 3

PROCEEDINGS PREPARED/DELIVERED BY INTERNATIONAL BUSINESS SERVICES, INC.
UNDER CONTRACT DAAK70-78-D-0030

SECOND SOFTWARE LIFE CYCLE MANAGEMENT

WORKSHOP

20-22 AUGUST 1978

ATLANTA, GEORGIA

SPONSOR

U.S. ARMY INSTITUTE FOR RESEARCH IN
MANAGEMENT INFORMATION AND COMPUTER SCIENCE

313 CALCULATOR BUILDING
GEORGIA INSTITUTE OF TECHNOLOGY
ATLANTA, GEORGIA 30332

WORKSHOP_ CHAIRMAN WORKSHOP DIRECTOR
VICTOR K. BASILI EDWARD H. ELY

UNIVERSITY OF MARYLAND . AIRMICS

Tne views, opinions, and/or findings contained in this
report are those of the authors and should not be con-
strued as an official Department of the Army position,
policy, or decision, unless so designated by other
documentation.

e

DISTRIFOTION STATHILNT A

Appioved for public release;
Distribution Unlimited

e e R T P ———

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) a*‘t_/
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER
. 4D-A/oY P12
4. TITLE (.la‘ml'tla) 4 MYPE OF;EPORT & PERIOD COVERED
(o

Second Software Life Cycle Management Workshop .
August 21-22, 1978, Atlanta, Georgia.

xﬁxnal -/Augusz 1978 »
REPORY NUMBER

78CH1390-4C

7. AUTHOR(J@ [I 71, 8--CONTRK RANT NUMBER(«) f
Editors: {Victor R.fBasili| University of Pl R
Maryland aﬁaltdward H. ,Ely} ATRMICS / C,) DAAK7D‘78 -D- 0030 £ v«
P A _/ e
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
. . . AREA & WORK UNIT NUMBERS
International Business Services, Inc. ’ J,},
1090 Vermont Ave, NW Suite 1010 ALY
Washington, D.C. 20005 le——
11. CONTROLLING OFFICE NAME AND ADODRESS 12. REPORT DATE
US Army Institute for Research in Management 21-22 August 1978
, Information and Computer Science (AIRMICS), 13. NUMBER OF PAGES]
‘ 115 O'Keefe Building, GIT, Atlanta, GA 30332 220 1
4. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 1S, SECURITY CLASS. (of this report)
UNCLASSIFTED
154, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
DISTRIBUTION A r-ﬁf]'f'_ ’ - oL
| AlE U R 59, }

BT L TR O }

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if ditferent from Report)

18. SUPPLEMENTARY NOTES

Co-sponsored by the TEEE Computer Society

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Software Life Cycle Workshop, Life Cycle Cost Curves, Management Tools for
Software, Software Reliability, Productivity, Budget, Models.

20. ABSTRACLT (CTontinue en reverse siwe M neceesary and identify by block number)

This report contains summaries of the sessions conducted at the workshop and
position papers presented to the workshop. Session summaries are:

Life Cycle Management Methodology Dynamics - Theory

Life Cycle Management Methodology Dynamics -~ Practice

Life Cycle Management Measurement Models - Predictive

Life Cycle Management Metrics - Measures § Empirical Studies ‘/
Nt

DD 505 W73 eormow oF ? nov €5 1s oBsoLETE UNCLASSTFTED = . . - e

SECURITY CLASSIFICATION OF TNIS PAGE (W (When Deta Entered)

__LIINCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Position papers are:

"Modeling, Measuring § Managing Software Cost"
"Improving the Signal/Noise Ratio of the System Development Process"
"A Step Towards the Obsolescence of Programming"

"A Contingency Theory to Select an Information Requirements Determination
Methodology"

"A Life-Cycle Model Based on System Structure"

"The Implications of Life-Cycle Phase Interrelationships for Software
Cost Estimating"

"Software Technology and System Integration"

"Establishing a Subjective Prior Distribution for the Application of
Life-Cycle Management for Computer Software"

"Design Process Analysis Modeling-An Approach for Improving the System
8 g P
Design Process"

"Life-Cycle Cost Analysis of Instruction--Set Architecture Standardization
for Military Computer-Based Systems"

"Useful Evaluation Tools in the Design Process"
"Programmers are too Valuable to be Trusted to Computers'
"Software Cost Modeling: Some Lessons Learned"

"Progress in Modeling the Software Life Cycle in a Phenomenological Way
to Obtain Engineering Quality Estimates and Dynamic Control of the Process"

"Software Cost Modeling: Some Lessons Learned"

"A Software Error Detection Mode¢l with Applications"

"Laws and Conservation in Large-Program Fvolution"
"Validation of a Software Reliability Model"

"Progress in Software Reliability Measurement"

"The Work Breakdown Structure in Software Project Management'"
"Operation of the Software Engineering Laboratory"

"Some Distinctions Between the Psychological and Computational Complexity
of Software"

"A Review of Software Measurement Studies at General Motors Research
Laboratories"

"Software Science--A Progress Report"

"Cost Effectiveness in Software Error Analysis Systems"

"Statistical Techniques for Comparison of Computer Performance"
"Software Complexity Measurement"

"The Utility of Software Quality Metrics in Large-Scale Software Systems
Development"

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

OF -

UNCLASSIFIED

"Reliability Evaluation and Management for an Entire Software Life Cycle"

"Analysis of Software Error Model Predictions and Questions of Data
Availability"

Accession For

| NTIS GRA:I '“Ng—‘
DTIC TAB

c
Unannounced M
Justification]
By.
| Distribution/

Availability Coéés«_—_
Avail and/or
Dist Special

UNCLASSTFTED

PREFACE ’

Increasing complexities and challenges of
modern systems development have set forth equally
new and urgent complexities and challenges relative
to advancements in management of computer software
life cycles.

As an agency of the United States Army
Computer Systems Command, the Army Institute for
Research in Management Information and Computer
Sciences (AIRMICS) was honored to be able to spon-
sor the Second Software Life Cycle Management Work-
shop. This forum brought together some of the most
notable contributors within the field of software
life cycle management. The collective thoughts of
this prestigious group are reflected in these pro-
ceedings and should significantly enhance and in-
fluence the course of future life cycle management
directions.

My sincerest personal appreciation is
extended to all those who participated and made
the Workshop a highly successful venture in tech-
nology exchange.

Clarence Giese
Director, AIRMICS

IN DEDICATION TO THE MEMORY OF OUR COLLEAGUE,
ROBERT McHENRY

TABLE OF CONTENTS

PAGE
1. PREFACE - Dr. Clarence Gilese !
IT1. EXECUTIVE SUMMARY - Victor Basili, Edward H. .Ely, Donovan Young 1
4
ITI. QUESTIONS
IV. SESSION SUMMARIES
LIFE CYCLE MANAGEMENT METHODOLOGY 7
DYNAMICS - THEORY
Chairman: John H. Manley, Johns Hopkins University
LIFE CYCLE MANAGEMENT METHODOLOGY 21
DYNAMICS - PRACTICE
Chairman: Ravmond W. Wolverton, TRW Defense and Space Svstems
LIFE CYCLE MANAGEMENT MEASUREMENT 32
MODELS - PREDICTIVE
Chairman: Lawrence H. Putman, Quantitative Software Management, Inc.
LIFE CYCLE MANAGEMENT
METRICS - MEASURES & EMPIRICAL STUDIES 44
Chairman: L. A. Beladv, Thomas J. Watson, Research Center/IBM
V. POSITION PAPERS
A. LIFE CYCLE MANAGEMENT METHODOLOGY
DYNAMICS & THEORY
" " 47
Modeling, Measuring & Managing Software Cost
John R. Brown, Boeing Computer Services Company
"Improving the Signal/Noise Ratio of the System Development Process" 52
Melvin E. Dickover, SoftTech, Inc.
"A Step Towards The Obsolescence of Programing' 60
Harvey S. Koch, University of Rochester
"A Contingency Theory to Select An Information Requirements 63
Determination Methodology"
J. David Naumann & Gordon B. Davis
University of Minnesota
"A Life-Cycle Model Based On Svstem Structure" 66

Francis N. Parr, Imperial College of Science
and Technology/England

RO VI

"The Implications of Life~Cvcle Phase Interrelationships for 70
Software Cost Estimating"
Robert Thibodeau and E.N, Dodson
General Research Corporation

B. LIFE CYCLE MANAGEMENT METHODOLOGY
DYNAMICS-PRACTICE

"Software Technology and System Integration" 77
Robert McHenry & J.A. Rand
IBM Corporation

"Establishing a Subjective Prior Distribution 81
for the Application of Life-Cvcle Management
for Computer Software"
George J. Schick & Chi-Yuan Lin
University of Southern California

"Design Process Analvsis Modeling--An Approach for 88
Improving the System Design Process"
Barbara C. Stewart
Honevwell Svstems and Research Center

"Life~Cvcle Cost Analysis of Instruction--Set 93
Architecture Standardization for Military
Computer-Based Systems"
Harold Stone, University of Massachusetts
Aaron Coleman, U.A. Army

"Useful Evaluation Tools in the Design Process" 95
C.E. Velez
Martin-Marietta Aerospace Corpotration

"Programmers Are Too Valuable to Be Trusted to Computers' 99
Gerald M. Weinberg, Ethnotech, Inc.

“Software Cost Modeling: Some Lessons Learned" 129
R.W. Wolverton & B.W. Boehm
TRW Defense & Space Systems Group

Page

C. LIFE CYCLE MANAGEMENT MEASUREMENT
MODELS-PREDICTIVE

"Progress in Modeling the Software Life Cycle 105 -

in a Phenomenological Way to Obtain Engineering Quality Estimates
and Dynamic Control of the Process”
L. H. Putnam

"Software Cost Modeling: Some Lessons Learned" 129
Barry W. Boehm and R.W. Wolverton
TRW Defense and Space Systems Group

"A Software Error Detection Model with Applications’ 133

Amrit L. Goel, Syracuse University

"Laws and Conservation in Large-Program Evolution" 140
Meir M. Lehman, Imperial College of Scilence &
Technology/England

"Validation of a Software Reliability Model" 146
Bev Littlewood, City University/England

"Progress in Software Reliability Measurement" 153
John D. Musa, Bell Telephone Laboratories

"The Work Breakdown Structure in Software Project Management" 156
Robert C. Tausworthe, Jet Propulsion Laboratory

“Operation of the Software Engineering Laboratory" 162
Victor R. Basili & Marvin V. Zelkowitz, University of Maryland

VI.

D. LIFE CYCLE MANAGEMENT MEASUREMENT
METRICS-MEASURES & EMPIRICAL STUDIES

"Some Distinctions Between the Psychological and
Computational Complexity of Software"
Bill Curtis, Sylvia B. Sheppard, M.A. Borst
Phil Milliman. Tom Love
General Electric Company

"A Review of Software Measurement Studies
at Ceneral Motors Research lLaboratories"
Joseph L. Elshoff, Computer Science Department
General Motors Research Labortories

"Software Science--A Progress Report'
Maurice H. Halstead, Puvrdue University

"Cost Effectiveness in Software Error Analysis Svstems

Maryann Herndon, San Diego State University

"Statistical Techniques for Comparison of
Computer Performance”
Sandra A. Mamrak, The Ohio State University

"Software Complexity Measurement"
Thomas J. McCabe, Independent Consultant

"The Utility of Software Quality Metrics in
Large-Scale Software Systems Developments'
James A. McCall, General Electric Company

"Reliability Evaluation and ..auizement for
an Entire Software Life Cycle"
Isao Miyamoto, Nippon Electric Companv, LTD/Japan

"Analysis of Software Error Model Predictions and

Questions of Data Availibility"
Alan N. Sukert, Rome Air Development Center

ATTENDEE LIST

166

174

180

186

P

I11. EXECUTIVE SUMMARY

OF THE

SECOND SOFTWARE LIFE CYCLE MANAGEMENT WORKSHOP

By Victor R. Basili, Edward H. Ely and Donovan Young

The Second Software Life Cycle Management
Workshop brought together 40 Software Life Cycle
Management Technology researchers and 90 attendees
to discuss theory, practice and technology in
managing software over its life cycle.

Building on last year's progress in out-
lining, identifying and describing the phenome-
nology of software development, this year's par-
ticipants discussed progress in validating, refin-
ing, extending and exploiting the models and
metrics reported in Software Phenomenology (work-
ing papers of the Software Life Cyvcle Management
Workshop, August 1977). The main concern ex-
pressed by most participants was to foster the
emergence of a viable life cycle management
technology that could eventually allow accurate
estimation and control of time and resources
necessary to develop and support software in the
military environment.

- Topics of interest included (1) description
and understanding of various components of the
life cycle, (2) ways to delineate and analyze
relationships among component activities, (3)
milestones and other tools to help direct, coor-
dinate, understand and control research and
development in software life cycle management,
and (4) development of management tools using
the results of life cycle management research to
help plan and manage software development pro-
jects,

The Workshop was divided into Measurement
and Methodology areas, and each of these areas
was subdivided as follows:

1. Methodology

A. Theory: Identification of life
cycle components and their interre-
lationships, based on a comprehensive
view of the overall software develop-
ment process. Chairman, John H. Manley.

B. Practice: Formal definitions and
managment tools found or expected to
be useful in life cycle management
and control. Chairman, Raymond W.
Wolverton.

2. Measurement

A. Predictive Models: Models derived

*Numbers in brackets refer to page numbers fn this
document,

by analyzing the consequences of a set o>f
assumptions about the development process
calibrated by data. Chairman, Lawrence
H. Putnam.

B. Empirical Models: Models based on
analysis of data from past and ongoing
development projects. Chairman, L. A,
Belady.

Participants submitted papers in advance,
summing up their research and reporting new un-
published results. These papers appear in tL.e
present proceedings.

The two-day workshop began with short pre-
sentations by each of the participants to stim-
ulate ideas and discussions. This was followed
by a formal discussion session addressing a set
of questions (included herein) regarding topics
of interest to the Department of the Army. The
four groups outlined above met concurrently, each
discussing a subset of questions. The results
were orally presented by the four Chairmen to
the Workshop at large. Summarized versions of
workshops findings and recommendations for each
of the four topic areas prepared by Sfession
Chairmen are included at the end of this Execu-
tive Summary.

A very interesting banquet address was de-
livered by Mr. E. lLarry Dreeman, Chairman of the
National Security Team, Federal ADP Reorganiza-
tion Study, the Presidential Reorganization Pro-
ject. Mr. Dreeman's remarks centered on the pre-
liminary findings of the study team's efforts and
clearly outlined the potential sotfware and re-
lated system management challenges facing Depart-
ment of Defense.

This Workshop attracted substantative papers
from several of the most widely-cited investiga-
tors in software management. Taken as a whole
the papers demonstrate rapid progress in software
management science, especially in the field of
software cost modeling and prediction (Boehm and

Wolverton [129],Elshoff {177, Halstead [174],Nauman
and Davis [63],Parr [66], Thibodeau and Dodson[70],
Stone and Coleman{99, Velez [95], Putnam{105], and
Tausworthe [156]1%* less rapid but significant pro-
gress is shown in the field of coftware mainten-
ance and relfability estimation and control (Cur-

tis et al (166§, Goel [133]), Littlewood [146, Musa [153]

Miyamoto [195] and Sukert [209]). Some progress is
evident in formal monitoring proceddres for soft-
ware management (Dickover {52],and Basili and Zel-
kowitz [162]) and in automation of estimation tasks
(Shick and Lin(81)]), both of which were areas in
which many participants expressed intense in-
terest and hopes for further results.

The main conclusion that can be drawn from
the collection of papers is that tools for soft-
ware management and quantitative assessment of
the software process are in a state of rapid
development. Despite severe difficulties with
definitions, taxonomies and data, and despite
the fact that the consensus at the end of the
1977 Workshop was that better measurement and
definition tools were needed before successful
management tools could be developed, the papers
tended to concentrate on management tools and
measurement rather than definitions. Even the
phenomenclogical papers were written and presen-
ted with a clear view toward managerial appli-
cation. Participants agreed that the technical
papers in the Second Workshop were more evalua-
tive and less speculative than those published
last year. This was seen as a sign of real pro-
gress, but it was also agreed that additional
evaluations based on common definitions and real
data are still lacking and badly needed.

Summary of Findings

The findings of the Second Workshop include
the firm conclusions reported by the discussion
sessions and the technical papers, validated by
discussion at large among participants and atten-
dees. These findings may be summarized as fol-
lows:

1. Formal life-cycle management tools are
useful in the development phase (Boehm
and Wolverton [129],Parr [66], Stewart [88],
Velez {95], Putnam [195). Management tech-
niques for the development phase of all
kinds of software are presented by
Dickover [52]and by Naumann and Davis
{63]1. Many limitations of these methods
were discussed; for example, Naumann and
Davis cite experience that formal methods
are more useful for low-uncertainty pro-
jects than for projects involving truly
new software.

2. All classes of software should be managed
according to a common framework, but
different management procedures should be
used for each phase of the life cycle.

A specific set of life cycle phase defi-
nitions was pri.vosed by the Methodology/
Theory session group.

3. Overall life-cycle cost curves are use-
ful and promising, but not yet well vali-
dated by real data from a multiplicity of

environments. Many different sets of

assumptions give rise to different mathe-
matical forms of life-cycle curves, all
having similar goodness of fit to his-
torical data. Parr{66] and Thibodeau and
Dodson{70] offer alternatives to the
Rayleigh curve.

Reliable data for calibration of life-cy-
cle curves may not be available. In the
absence of data-based verification, des-
pite the recommendations of the previous
Workshop, a promising alternative is to
generate life-cycle curves by aggregating
data from PERT analvsis (Boehm and Wol-
verton [129]),Parr [66, Tausworthe [156).
This would allow more detailed estimation,
and would sidestep the difficulty that
empirical data cannot discriminate among
alternative agpregated life-cvcle curves.

Little progress has been made in develop-
ing automated management tools for life
cycle management of software, Real-time
decision-aiding systems would be desir-
able. Velez [95} has reported an auto-
mated way of expressing a target system
as a data base in a special language,
giving a tangible, measurable object

that exists prior to writing any target-
system code (details not revealed).
Schick and Lin[81] ceport automation of

a small but important task--interactive-
ly aiding an expert in the development of
subjective probability distribution for

a random variable. A PERT-type work-
breakdown procedure has been partially
automated (Tausworthe [156]).

Lines of code per man-month is not a sat-
isfactory indicator of productivity and
should be replaced by measures that in-
corporate quality and complexity as well
as length. Reports of successful length-
only productivity measurement (Curtis et
al [166], Halstead [174]seem to contradict
this finding; but their data did not cruss
organizational boundaries, and Halstead's
data came from an organization that en-
forces standardized coding complexity

and corrects line-of-code counts for reuse
of standard code.

Software reliability modeling is rapidly
maturing, so that models such as those of
Littlewood [146)and Musa[l53}can be used
routinely. Elshoff[172]reports success
with an (unspecified) predictive measure
for estimating the time to revise a pro-
gram.

Good life-cycle models should possess
many detailed characteristics such as
those proposed by the Methodology/Theory
session group.

wainl..

9. The key goal regarding management infor-
mation tools Is increased visibility by
the manager at all times. This implies
a local terminal able to report key pro-
ject aggregates on demand.

10. Software life cycle management problems
are people-oriented, not machine-oriented,
according to the almost-unanimous consen-
sus of participants.

11. Little or no progress has been made in
evaluating maintainability. Effective
software life spans have been impossible
to estimate in a good or explicit way.
Software seems to possess finite life
and, thus, must be redone or scrapped

: within a few years. It appears to be
; extremely unusual to pay as much as a 10

per cent premium for maintainability.

—
S

. Changes, modifications and enhancements
should not be classed and treated as
maintenance. Most participants agree,
however, that perceived software flexi-
bility (ease of accomplishing prospec-
tive modifications) should be considered
during design and procurement decisioms,
and there should a”so be a recognition
during the development phase that changes
are inevitable to keep software working
while its environment evolves.

Summary of Recommendations

The recommendations of the Second Workshop
are the firm recommendations reported by the
discussion sessions and the consensus recommenda-
tions expressed by the participants and attendees.
These recommendations are summarized as follows:

1. Researchers and managers should adopt a
standardized set of definitions of terms
in software life cycle management. A
task force or definitions committee should
be organized to work on this problem.

2. Resources should be set aside specifically

to validate, classify and test software
management models. A project should be
initjated to produce an evaluative review
or '"catalog”" of existing descriptive and
predictive life-cycle models, describing
each model and listing its assumptions,
purpose, capabilities and iimitations.

3. Research should be done to provide real-
time automated management tools for each
phase of software life cycle management,
using automated metrics and measures that
incorporate past project histories and
current project information. Automated
tools for programmers are also needed.

4, Large-scale data-based validation pro-
jects should be undertaken to validate
and refine existing and proposed models
and metrics and to help provide a basis
for standardization of data collection
and model parameters.

5. A taxonomy of software environments
should be established, and research
should be done to elucidate distinc-
tions among individualized software
environments. A well-founded taxonomy
would allow objective classifications
that are indispensable in controlling
sources of variance in statistical
studies of life cycle phenomena and
metrics.

6. Better and more detailed milestone def-
initions need to be established to pro-
vide managers with objective project
checkpoints that can be assessed quan-
titatively.

7. More transfer of technology is needed
from project to project and from or-
ganization to organization. Intensi-
fied effort is needed, not only to pro-
vide technology-transfer vehicles such
as these Workshops, but also to provide
training in methodology and tools for
software managers. Effort is also
necessary to encourage life cycle
management research projects to be
carried out in conjunction with ongoing
software development and maintenance
programs. The Measurement/Predictive
discussion group recommends that soft-
ware project managers not be asked to
experiment on their projects, but only
to allow data to be collected in a
neutral manner. Experiments should
make data available to managers to help
them manage.

Recommendat ions that (1) represent minority
opinions within the discussion groups or (1) rep
resent personal opinfons of the discussion wroup
chairmen are omitted from the above summarv hu
are included in the session summarics which 101~
low.

ITI. QUESTIONS FOR
SOFTWARE LIFE CYCLE MANAGEMENT WORKSHOP

The following are a list of questions of interest in the area of
Software Life Cvcle Management. They are meant to generate discussion
and hopefully elicit information of benefit to the community. When con-

sidering these questions, keep in mind both the process and the product.
MILESTONES:

Are there better wavs to characterize and measure progress than the
standard definitions of milestones as points in time? Can we capture the

dvnamics of the process, i.e., the interactiveness, the user's involvement?

Are there different tvpes of definitions of progress with respect to
time und with respect to classes of projects, v.p., first-time efforts,

standard developments, etc.?
BUDGET:

What should the people-loading curve be across the life cvele of a
system? What effect do different methodologies have on the shape of that
curve? How do vou decide how much do to do within a fixed budpet? What is
the effect of size and organization on the budget? What generic factors
are/should be present in software cost-estimating formulas? What arc the

techniques for measuring work accomplished versus budgeted dollars?
PRODUCTIVITY:

Are there better ways to measure group productivity than lines of code
per man month? How can one measure individual productivity or productivity
on small projects? What are the important factors for measuring productivity

during development, during modification?
TOOLS:

Where should we be going in terms of automated tools for managing
the software development process and aiding the development personnel
(Management information vs. product generating tools)? What should tools

encourage?
EMPIRICAL STUDIES:

What do we really need to know to understand the process better?
What information should be collected about the process, the product and
their fnteraction, and for what purpose? What kinds of experiments and
evaluations should be performed? How can we capture'the idea of program
complexity? How can program managers be convinced té conduct experiments

on their programs? What progress, if any, is being made on the transfer of

learning from project to project within and between organizations?

MODELS :

Give a set of criteria for good predictive models of the software
life cycle. How could statistical and analytical models be combined?
Is there a need for a "standard" set of generic models of the software

life cycle process?
METHODOLOGIES :

What are the components of an overall methodology? Where should

" standardizable” methodologies?

sof tware technology be going? Are there
What effect do different software development characteristics have on the
implementation or adaption of methodologies in practice? How do vou

characterize a methodology? How many methodologics exist in practice?
MAINTENANCE/MODIFICATION:

Is there a way to determine and measure the effective life span for
software systems? How do vou know when to redo a system? What are the
design trade-offs for maintainab{lity? At what point in the life cycle
should maintenance considerations be included? What strategy should be

used to transfer software from developer to maintainer?

MANAGEMENT:

What are the major ingredients in the management of software? What
makes it unique? What makes it different from hardware, for example?
How should the organizational structure relate to the problem to be solved
and the different interactive phases of development? To what extent should
managers be technically trained/involved? To what extent should toechnical
personnel be managerially trained/involved?, Ave there different classifica-
tions of software that require different methods of management (e.g.,
embedded vs. non-embedded)? What are thev? Are there predictable crises

in the software life cycle and what are the carly warnings?
ENVIRONMENT :

Is there anything different in the above with respect te future tech-
nological developments, e.g., small computer environments, standardized

modules? What changes need to be made? 1Is there any "scaling" effect?

GENERAL:

What parts of the above questions should be attacked first? What are
solvable in the next five years? What questions would vou like to see
asked next year? What should research efforts concentrate on? What are

the ten top software life cycle management terms that need definition?

What is your source authority for present definitions, e.g., ANSI?

...workshop in progress...

Dr. Giese in progress.

Dr. Clarence Giese (right), Direc-
tor of ATRMICS, gave the Welcoming
Address

Mr. Lawrence Putnam (2d from L.) chairs session on Pre-
dictive Measurement Models

Mr. E. larryv Dreeman (right), Chairman
of the National Securitv Team, chats
with attendees after his banquet speech

Attendees in General Session.

IV. SESSION SUMMARIES

I. LIFE CYCLE MANAGEMENT METHODOLOGY
DYNAMICS & THEORY

Chairman: Dr. John H. Manley, .Johos Hopkins University

PANELISTS
John R. Brown Harvey Koch
Thomas Delutis J. David Nauman
Melvin E. Dickover Francis N. Parr

Robert Thibodeau

SOFTWARE LIFE CYCLE MANAGEMENT: DYNAMICS THEORY

Summarized by
Dr. John H. Manley

The Johns Hopkins University
Applied Physics Laboratory
Laurel, Maryland

Abstract

The Dynamics Theory Group discussed
the conceptual relationships of software
to a system life cycle model, and
management to a composite software life
cycle model. A "standard" software life
cycle management model is proposed that is
a modification of the generally accepted
Department of Defense system life cycle
model. The group agreed that there are at
least five distinet types of Army
management involved in a major system
software management life cycle, and linked
quantitative life cycle milestones to
elementary decision theory. Other
findings are reported that suggest several
profitable areas for Army software

management Tresearch, A summary of a
separate report being submitted to the
Chairman of the President's ADP

Reorganization Project National Security
Team is included as a sequel to the highly
stimulating Monday night banquet
presentation. The report recommends that
ADP resource management policymaking for
technical issues be centralized; ADP
resource acquisition management control be
functionally decentralized, and; a systems
management approach similar to that
developed for embedded computer systems be
used for ADP system life cycle management.

Introduction

The Dynamics Theory Group focused on
the theoretical aspects of software life

cycle management (SLCM). We interpreted
our workshop charter quite 1literally and
decided not to get 1involved wit the
details of management practice or tools
since it appeared during the opening
plenary session that the other three
groups would adequately cover those
aspects of SLCM. Therefore, we tried to
answer only a few of the most basic
questions that were central to our
"dynamics theory" view of the world. For
example, we tried to determine whether or
not traditional ways of modeling the

software life cycle, to include
milestoning, could be improved upon.

We also learned from the plenary
session that the other three groups
intended to concentrate on the Full-Scale
Development phase of the Department of
Defense (DoD) system life cycle which is
primarily involved with the program
management aspects of developing software.
Therefore, the predominant activity
addressed by our group was management of
the complete software 1life cycle, with
emphasis on aspects other than the more
popular area of program management of the
software development process. It was our
feeling that the Army should be concerned
with a wider range of management problems
to include:

a, Developing better ADP and
tactical system requirements that include
software as component parts.,

b. Administering (as the buyer)

the software development technical
management process which in many cases is
carried out Dby outside contractor

organizations.

c. Developing a better under-
standing of how to economically maintain
software contained in operational systems,
both as a user and logistician.

Thus, our deliberations were directed
more from the perspective of Army
managers, be they corporate, field,
technical, program, or logistics. We then
took our firgt step into the arena of
software life cycle management methodology
theory by trying to identify life cycle
components and their relationships based
upon this Army manager perspective of the
software development process.

SLCM Management Differences
ract or Fancy?

The first specific question we
addressed was: Are there different

8
classifications of software (for example, We cecommend that our proposed
embedded versus non-embedded or functional software life cycle management model shown
versus non-functional) that require in Figure 1 be used as a strawman baselire
different methods of management and, if for a follow-on research effort by the
this is true, what are they? Army to add conceptual detail to the
individual life cycle subphases. Since the
We reached the unanimous conclusion top levels of life cycle phase terminology
that: used in existing Department of Defense
documentation remain the same, that is,
Appropriate management methods Conceptual, Validation, Full-Scale
that are applicable to different Development, Production, Deployment and i
phases of the life cycle do not vary Support phases, we do not advocate
across different classes of software, replacing any existing documentation but
but, the specific management method would simply modify it as described below.
Used can be and usually 1is different
for different phases of the software Conceptual Phase
life cycle.
A hown in Figure 1, the C 1
This first finding prompted us to Phasesha: been dividig into twg sgggggggg,
closely examine the life cycle management Conceptual Requirements Definition and]
process using a somewhat different Conceptual Requirements Validation.
perspective than has been customary in the
past. As a first step, we found that we Definition Subphase. Most front end
could use the Department of Defense (DoD) major system requirements development
system life cycle as it is commonly activity is performed by DoD functional
understood (Reference 1) to generally fit user or field organizations for major
our individual theories of what software systems. In fact, field commands usually
life cycle management means. However, we employ relatively large groups of people
wexe: forced to make what turned outfto be (development planners) who perform this
‘ several conceptually significant type of analysis on a continuing basis.
: modifications to that "system" model in Since they necessarily possess almost a
| order to develop a useful "software" 1life purely functional systems orientation, an
! cycle management working model. ADPE (Automatic Data Processing Equipment
|
I
Defense systein Full-scale
life cycle Conceptual Validation development Production Deployment Support
major phase
.ﬁ?e";ac?e Requirements| Requirements| lidati Full-scale P . Debugai Fi . Mai Modificati
b definition validation alidation development roduction ebugging ine tunipg aintenance odification
Corporate A A A A A A
managemen ¢ (N
! decisions Program Ratification Production Deployment Turnover Disposal
decision decision decision decision decision decision
Type of
management
F“"‘I:i'r"z"a' or Primary Advisory Advisory Advisory Advisory Advisory Advisory Advisory
Technical
new technology Primary Advisory Advisory Advisory Advisory
Program Primary Primary Primary Primary Primary Primary
Logistics Advisory Advisory Advisory Advisory Advisory Primary Advisory
Fig. 1 Software life cycle management model.

included in such systems is almost always
embedded in the classic sense of the
original definition, that is:

"...a computer can be considered
to be of the embedded variety when it
is:

1, physically incorporated
into a larger system whose primary
function is not data processing; and

2. integral to such a
system from a design, Procurement and
operations viewpoint.' (Reference 2).

It is important to note that such work
does not usually involve software
requirements analysis at this, the very
front end of the greater system life cycle
subcycle, but nevertheless always
represents the inital activity on first-
time systems,

The term 'greater system" will be
referred to subsequently and requires
clarification. In the context of embedded
computer resources in the tactical or
defense systems world, the greater system
refers to the tank, aircraft or missile
that contains the embedded computers,
computer programs and computer data as
component parts, We will show later that
this same interpretation can also Dbe
conceptually applied to greater (data
processing) systems such as supply,
gersonnel, transportation, payroll and so

orth.

Validation Subphase. The Conceptual
Requlrements Valldation subphase comes
next, It is distinct from the preceeding
subphase in that additional players are
involved during the important paper
feasibility study activities. When deemed
necessary (always for major defense
systems) these feasibility studies are
usually carried out jointly by both the
using (field) and development commands,
The development commands are three of the
Joint Logistic Commands (JLC) consisting
of the Army’s Materfiel Development and
Readiness Command (DARCOM), the Air Force
Systems Command (AFSC) and the Naval
Material Command (NMC or NAVMAT), These
conceptual system feasibility studies

seldom involve outside t tors gnd
usually have high mii ga§§c security

protection, thus being quite invisible to
both the academic and commercial software
comunities,

Thus, we see the conceptual phase as
necessarily consisting of two distinct

subphases, Conceptual Requirements
Definition and Conceptual Requirements
Validation. As will be explained later,
the changes in the participant mix from
the first subphase to the next has a
direct bearing on management of the
software life cycle.

Validation Phase

The Validation Phase 1s essentially
one in which the DoD validates the
solution to the previously validated
%reater system requirement., This 1is the

irst phase where software is generally
acknowledged explicitly as a system
resource. Specifically, in this phase the
program characteristics of performance,
cost and schedule are validated and
refined through extensive study .and
analysis, actual hardware development, or
possibly prototype testing. The main idea
here is that hardware development and
evaluation may provide corporate
management (Service Staff, Office of the
Secretary of Defense and the Congress)
with a better definition of program
characteristics, higher confidence that
risks have been resolved or minimized, and
a greater confidence 1in the ultimate
outcome than could the paper studies
%gnerated during the preceeding Conceptual

ase,

In this second major phase, an intial
Program Office cadre is expanded to a full
program office and, if a major system is
involved, software becomes an item of
specific interest as directed by Secretary
of Defense level instructions (for
example, see Reference 3).

Full-Scale Development Phase

During the next major life cycle
phase, the system including all of 1its
support items is designed, fabricated and
tested. The intended output 1is, as a
minimum, a preproduction system that
closely approximates the final product,
the documentation necessary to enter the
Production Phase, and the test results
that meet requirements. Since software
can be replicated precisely, this phase is
the most important with respect to the
development of quality software, and where
most of the emphasis has been placed to
date (as opposed to hardware where
production problems can be severe and very
costly).

Production Phase

When more than one copy of a system
must be produced, this phase becomes

important, especially 1if production of
copies is to be carried out over a period
of years as in the case of major defense
systems. One of the most difficult areas
of management in this phase involves
change control, with its difficulty being
directly proportional to the amount of
change activity. The same methods of
planning, development and testing should
be followed to make system changes during
production runs as were used previously in
the Full-Scale Development phase.

When producing copies of software
systems for multiple users, the same
principles apply and a quite close analogy
to hardware methods can be conceptualized.
Latent defects will emerge during this
phase and the user will continue to
require changes to the system, both in
hardware and software. Each change must
be treated as a mini full-scale
development, both in principle and in
fact, especially with regard to management
methods.

Deployment Phase

This phase has been interpreted and
defined somewhat differently by each of
the three military services and 1is

consequently difficult to describe in

of a "standard" software life cycle

terms
model, In general, this phase. includes
events generated when final copies of new

systems are actually put into operational
use in field organizations. We feel that
additional emphasis should be placed on
the management activities in this phase,
especially with respect to the problems of
transfer of development management
responsibility to the support management
team. It is an extremely difficult
problem to determine precisely the point

when any system (or copy thereof) becomes
truly "operational." We recommend that
the Army follow up on this point with

further research to develop an effective
system (software) deployment strategy. To

provide a starting point, we offer the
following description of two proper
subphases which we feel must be included

as a minimum.

Debugging Subphase. At the beginning
of the DepJoyment Bﬂase when a new system
is produced and first handed over to the
using organization, the embedded software
will necessarily contain latent defects.
This means that the initial activity in
the phase will involve bug removal, or
simply trying to get the system to run
smoothly in the user's environment, We
call this the Debugging subphase, This
does not mean, however, that when most
bugs are removed, the system will fully
meet current user requirements, even

10

to meet the

though it has been proven
specification through

original systems
extensive testing.

Fine Tuning Subphase. Thus, a second
distinct subphase we call Fine Tuning is
necessary. This involves tailoring the
system to meet current user requirements.
When one reflects on the length of time
involved for systems to pass through the
Full-Scale Development and Production
phases, it is small wonder that they
usually do not meet 'current'" user's
requirements that have evolved over a
period of perhaps 2, 5 or 10 years. Only
when this fine tuning is completed
however, should the system be allowed to
enter what we generally understand as the
Support Phase. But, how does one
determine when this activity 4is truly
finished? Again, we recommend the Army
focus a significant research effort on
this critical problem area.

In any event, the end point of the
Deployment Phase is quite clear, the
system and all of its associated software
has been ''thrown over the wall” to the
logistics or support manager...ready or
not,

Support Phase

As has been reported in this workshop
and elsewhere, the Support Phase 1is now
regarded as the highest cost phase with
respect to the total software life cycle.
It is the one on which we need to focus
most of our attention if we ever hope to
significantly reduce software life cycle
costs. This is also the phase in which
most of the ADP or non-embedded computer
system action resides. In short, the
Support Phase 1is where most of our money
is spent and where the Army should
concentrate its research efforts at
finding ways to reduce software support
costs.,

In view of 1its importance,
Dynamics Theory Group spent most of 1its
time discussing this phase and its
software life cycle mansgement
implications. We began by defining what
activities should be carried out in the
Support Phase. We decided that software
support should include at 1least the
following continuing tasks:

the

a. Continuing correction of
latent bugs and technical deficiencies 1in
software as they are discovered.

b. Making system changes due to
modifications to equipment (hardware) that
fails, wears out or is replaced for other
technical reasons,

c. Any other external impact
forcing a software change that does not
affect user greater system functionms.

These activities are what we consider
to constitute normal software maintenance
in a quite general context.

Modifications, however, will also
occur for other reasons. The main one
being that the user requires a change to
the functional characteristics of This
greater system, If such a modification
involves changing software (or hardware),
a quite different type of support activity
will be required.

Once the support manager begins to
invoke this last type of change process,
he is changing more than the data
processing components and, unfortunately,
this fact is not always recognized in the
professional community. Whenever the
greater system is impacted, the life cycle
begins a new subcycle that is very similar
to jumping Dback to the Full-Scale
Development phase and possibly to an even
earlier phase. Since this means that we
must reapply project management methods

through the modification development,
debugging and fine tuning processes, we
have defined this continuing cyelical
activity as a separate subphase called
System Modification.
System Disposal

Eventually, whether it be six months

or fifty years, when corporate management
decides that the greater system 1is no
longer needed by the organization, it is
removed from the active system inventory,
thus ending the software management 1life
cycle.

Management Relationships
to the
Modified Software Life Cycle

As shown in Figure 1, five distinct
types of management are involved during
the different phases and subphases of the
life cycle. Their relationships to the
phases and also to each other are briefly
described below.

Conceptual Phase Management

From this very first life cycle phase

through to the ultimate disposal of the
system, the functional manager 1is (or
should be) involved. He is the first one

to organize a team to develop the initial

greater system requirements. He oversees
his system during its development,
= PP

11

receives it in the field and operates it
until its disposal. This type of
management is primarily concerned with how
the greater system performs its military
mission. All computer resources are
treated as embedded, that is, as component
parts of the greater system. The
functional manager's continuing bottor
line activity 1is to plan, develop an
employ systems as necessary to achieve hi-
operational objectives,

Whenever a new system or major system
modification concept defined by the
functional manager includes future or even
state-of-the-art technology, scientific
and engineering people are usually
employed in the Requirements Concept
Validation subphase to perform technical
feasibility studies, and later to develop
any required new technology. It is
generally recognized that day-to-day
management of scientists and engineers is
quite different than so called ‘''line
management'" of personnel who operate
greater systems in the field. There are,
in fact, different curricula in most major
universities that address engineering
management/administration separately from
business management/administration. Thus,
it must be recognized that in the early
stages of the software life cycle,
technical management as a subset of
general management is often involved.

Validation Phase Management

Once the system begins the Validation
Phase, planning for system development
begins in anticipation of an approval for
system full-scale development and eventual
production, It 1is here that the type of
program office is defined, the
determination of the type of contracts to
be used, decisions on which components
will be developed in-house and which out-
house, the type and level of expertise the

program nanager should have and so on.
Once _these preliminary matters are
determined by corporate management, a

program manager is hired and a program
office cadre assembled., This is the point
when program management as a separate type
is begun as an addition to the existing
functional area management and technical
management teams already on board.

The distinguishing feature of program

management as a type is that the program
manager must live within three basic
constraints:

a. A '"fixed" budget.

b. An "inflexible" schedule,

c. A "constantly changing"
specification of the greater system hg %s
chartered to build,

This type of management is the one we
generally talk about at workshops and
conferences such as this, usually to the

exclusion of the other types shown in the
expanded life cycle model. This is not
reant to {mply that the program management
for a new system development or major
modification to an existing system is not
a most critical occupation. However, our
group recognized that this is definitely
not the only type of management involved
in the overall software life cycle.

Full-Scale Development
Phase Management

Sometime during the development phase,
logistics people must get involved to
insure that the greater systems being
developed will be delivered as
“"maintainable" during the operations
phase. Once the lo%isticians get on board
as shown in Figure 1, they remain involved
with the system until
disposal,

Production/Support
ase Management

When the system has been
developed to the point that the major bugs
have been removed and it has been fine
tuned to satisfy the user, responsibility
for the system is formally transferred
from the program manager to the logistics

its ultimate

manager and the user for the remainder of
the Iife cycle. As mentioned before, the
system can be changed (sometimes quite

drastically) by the logistics manager with
no outward appearance of change to the
user in functional characteristics. When

the user requires a change, however, both
the user and the 1logistician must work
together with a project manager to

eventually develop a new system, that is,
System XYZ-Model 2, -Model 3, -Model &4 or
-Model n.

Notice that we make the distinction
between '"'program"” and 'project' managers.
The program manager is the one involved
with the original development of the
greater system, A succession of project
managers are those responsible for making
modifications to the delivered greater
system during the Support Phase of the
system life cycle. However, both program
and project managers use the same tools
and techniques to perform their important
functions.

Corporate Software Life Cycle Management

Of course, overseeing
management types mentioned

all of the
thus far are

the top-level decision makers involved
with deciding: (a) when the system can
proceed from one major phase to the next

(Defense System Acquisition Review
Council), (b) whether or not the system
will be funded from year to year
(Congress) , (c) whether a particular
computer will be approved for purchase

(General Services Administration), (d)
whether the system is needed to fulfill
greater National security needs
(President, Secretary of Defense, Service

Secretaries, Joint Chiefs of Staff and the

Service Staffs) and so forth, We
consolidated all of these top-level
managers under the global title of

corporate management,

Army Management Implications

The implications for Army management
that stem from our life cycle model and
the concomitant management relationships
described above are contained in this
section of our report. Our discussions in
developing the modified software
management life cycle model generated many
digressions, some of which resulted in
theoretical conclusions that we felt
warranted reporting, while others did not.
Thus, the following topics are offered as
a selection of those we feel are worth
consideration by the Army as potential
topics for further research.

Life Cycle Cost Implications

Upon close examination of a variety of
Army and other automated systems, we found
that we could easily fit any kind of a
greater system into the modified life
cycle model described above. Clearly,
major defense systems such as missiles,
tanks, aircraft, command and control
systems, ships or the 1like that contain
embedded computer resources pass through
every phase we have described. For
example, one speaker commented in the
opening plenary session that the B-52
bomber's original conceptional requirement
was developed in approximately 1948 and
the system deployed in approximately 1952,
Since that time, it has undergone many
major wodifications., He stated quite
accurately that it is highly unlikely that
anyone at the beginning of that program
could have foreseen that the B-52 would
still be flying today, 30 years after
system concept definition,

The management implication of
long term continuing modifications
major system 1is that their cost over the
life cycle cannot be planned or even
speculated with any degree of reasonable
accuracy. Thus, our group concluded that:

such
to a

The planned cost of software
embedded in a system should terminate

with the 1initial entry of the system

into the System Modification subphase

of the Support Phase of its life
cycle.

From that point on, each new
modification should be treated as a
separate project to be independently
managed over a mini-life cycle.

Another example closer to the

Automatic Data Processing community is the
automated post or base supply system that
is common throughout the Department of
Defense. The Conceptual Phase for the
automated supply system began in the
1950's and the system became fully
operational in the 1960's. Since then,
the system has been in the Support Phase.
This perspective of that greater system,
that is, the automated base supply system,
indicates that it may never reach the
Disposal milestone. Thus, we have had for
the past decade a succession of both
maintenance actions and system
modifications which have been successfully
carried out as they became necessary. In
no case, however, has a totally new supply
system emerged which required starting
back at the beginning of a complete
greater system life cycle.

Embedded Computer Resource
Management Tmplications

Our finding above that the supply
system is conceptually the same as the
B-52 with respect to its embedded computer
resources has another implication. As
some of the original greater system
embedded computers wear out and have to be

replaced, they fall under the Maintenance
subphase. If the original software is
captured through emulation on replacement

machines, we have not really changed the
system in the eyes of the functional user.
However, if we make a modification to
satisfy new or emerging user requirements,
then we go through the project management
and the development life cycle as far back
as the change warrants,

Upon closer examination of the
differences between so-called embedded
computer systems and non-embedded or

general purpose automatic data processing,

we found that the basic distinctions
between these two categories were as
follows:

a. There is a definite

difference in procurement methodology in
the DoD between embedded computers and
commercially available ADPE. In fact,
this area of of such great importance it

e

13

will be discussed separately as the next
major management implication titled

"Procurement Management Implications.”

b There

. is another major
difference between

embedded and non-

embedded computer systems with respect to
management, This 1is that the embedded
computer system is normally involved in

the complete life cycle model as developed
by our group. Most ADP management efforts
are only involved with the Support Phase
of the life cycle, since major ADP systems
such as supply, personnel, finance,
inventory control and so forth were
originally developed 10 to 20 years ago.
Current software development programs are
either of the maintenance or modification
variety and do not, in most cases, involve
new functional systems that begin 1in the
Conceptual Phase.

Procurement
Management Implications

We stated above that the methodology
for procuring Automatic Data Processing
Equipment (ADPE) 1is different than that
used for procuring Embedded Computer
Systems (ECS) in the Department of
Defense. Thus, the answers to the
questions of whether or not ECS or ADP
systems require different types of
management practice or different types of
life cycles are simply vyes and no,
respectively,

The distinction that has been made
between these two categories of automated
systems was a direct result of differences
in procurement regulations stemming from
the 1965 ""Brooks Act'" (Reference 4). The
Armed Services Procurement Regulation
(ASPR) 1is used to procure defense systems
and, in most cases, any computers embedded

in such systems, These are excluded from
the ADPE procurement regulations that
implement Brooks Act guidelines, as

administered by the Office of Management
and Budget (OMB) and the General Services
Administration (GSA).

Implementation of instructions
concerning '"GSA-controlled" ADP computers
on one hand, and "excluded" embedded
computers on the other, has resulted in
two separate series of directives and
instructions at the Office of the
Secretary of Defense level., The ADPE or
controlled computer procurements fall
under the purview of the Assistant

Secretary of Defense (Controller) and are

controlled under the "4000 Series"
instructions, The excluded embedded
computers fall under the jurisdiction of
the Office of the Undersecretary of

Defense for Research and Engineering.
They use the ASPR for most ADPE
procurement actions as governed by '"5000

Series' instructions.

To complicate matters further, each
service has developed its own unique
method for implementing the 4000 and 5000
Series regulations quite independently of
one another. Hence, the answer to the
original question is es, embedded
computer systems (ECS) and ADP systems do
require different types of management, but
not different types of life cycles.

This creates a problem of
qualification for the managers involved in

the 1life cycle of the system, In no way,
however, does this change the model
presented as the procurement method is

only a policy guideline for management tc

follow.

Functional Manager Involvement

Now what did we learn from an
examination of this revised 1life cycle
model? First, we found that functional
managers must stay involved in the
software aspects of their greater systems
throughcut the life cycle which, as we

have scen, can be an extremely long time.
They cannot abrogate this responsibility.
The implication here is that there must be

an office of primary responsibility
established for that system and the
responsibility carefully transferred
between the inevitable succession of
responsible incumbents. This
responsgibility for the functional
operation of that system must have a
continuous thread throughout the system

1ife cycle.

Software Manapement Interactions

We have shown previously that there
are really five distinct types of Army
management involved in the complete life
cycle of software that is a component part
of any automated system. The implications
of having five types of management we
found to be worth investigating in some
detail,

Our model illustrates that one of the
most difficult problems for a program
manager during the Full-Scale Development
phase of a major system is that he must
respond to the continuous management
oversight of the functional or line manger

and his changing requirements. Program
managers would always recommend, if they
had the choice, ' that the user or

functional manager stay out of their hair
during the development phase.

In addition to the curse of cthe user
and his changing requirements, the program
manager aleo has a problem 1if new
technology 1is involved in that the
technical manager will want to insure that
any innovations developed by his
scientific and engineering people are
correctly incorporated into the new
system.

But that's not all. The program
manager has yet another individual to
answer to, the logistics manager who is

looking for better and more complete

documentation, well defined system
interfaces, modularized architecture, and
evidence of the use of modern programming
practices or structured techniques so that
the system will be easy to maintain.

In spite of the problems these
overseers may impose upon the program
manager from time to time, he must
incorporate their "parochial views' into
his program plans. The fifth set of
managers, corporate, are responsible for
insuring that this is done in such a way
to best serve the interests of the overall

organization, be it the Army, Department
of Defense or the Country.

In short, we feel that this
conceptually explains both the necessity
for five interacting types of software
management and the difficulty program
managers have in coping with this
situation during the software life cycle.

Qualifications and Exceptions

There are, of course, qualifications
and exceptions to the model presented in

Figure 1, Some of the more important ones
that should be considered are summarized
below.

Degree of Structuredness, The degree
of tIsk or novelty iIn a software
development project or its 'degree of

structuredness’ must be considered when
using the model. Those projects which are
very similar to others that have been done

beforg, or those involving modifications
to major systems generally do not require
sufficient numbers of scientists and

engineers to be employed to warrant the
special aspects of technical management,
On the other hand, a major project such as
SAFEGUARD or APOLLO would obviously
require many technical managers to handle
the large numbers of scientists and
engineers working on the system in their
attempts to advance technology state of
the art,

Project Size. Much time has been
devote n this and many other conferences
to describing differences 1in life cycle
management based upon problems of scale.
For example, a short term, one-man project
to design and develop applications
software to solve an ad hoc engineering
problem may have an entire life cycle as
short as a few months. Clearly, the five
varieties of management described above
would not all be used. However, major
defense systems that must undergo the
Defense System Acquisition Review Council
(DSARC) process normally involve all five
types of management and have life cycles
as long as 20 to 30 years.

It is sufficient to say that there is
a drastic difference between a one-year
development for a small system versus the
30-year life cycle of a major defense
system.

Software
as a

Reliability Requirements.
reliability for systems such
management information system that
operates occasionally using only
historical information is clearly not as
critical as for real time, operational
systems involving missile guidance,
nuclear safety or life support. In
general, our group feels that, as system
software reliability requirements
increase, the need for more of the five
types of management involvement also
increases, thus 1lengthening the overall
software management life cycle.

Other qualifications
be added to those
However, during the
deliberations we could not
qualification or
negate the life cycle
described 1it.
or more could not be uncovered
more thorough analysis.

can, of course,
described above,
course of our

think of any
exception that would
model as we have
That is not to say that one
through a

SLCM Milestones

Another major topical area discussed

by the Dynamics Theory Group involved the
milestones that delimit phases and
subphases of the software management life

cycle model described above.

Purpose and Nature of Milestones

The first question we asked ourselves
was: Who are these milestones for? Our
conclusion was that this question can have
only one logical answer. Software life
cycle management milestones should be
designed for the direct use of the five
types of management decision makers
described above.

15

led to a further conclusion that
any milestone in a software life cycle
management model must be a point of
measurement at which information on the
state of the life cycle process 1is
collected for the sole purpose of serving
as an input to help solve a specific
management decision problem, It is
significant that this is in concert with
the principles of elementary decision
theory which can be used to great
advantage in improving all levels of
software life cycle management. Thus, we
emphasize that:

This

should represent the
or

Milestones
termination of specific activities

tasks and also provide a measure of
the degree of completeness (or
quality) of those activities. Hence,

they must be quantitative to be useful
to management for judging the progress

of a system through its 1life cycle.
If they are not quantitative in
nature, they simply cannot adequately

support this necessary measurement

function.

Milestone Taxonomies

A secondary question as to whether or
not there are or can be various
classifications or taxonomies of
milestones we found not to be relevant to
our other findings. Even though a manager
who is interested in controlling a budget
might use a different set of milestones
than, say, a technical manager who 1is
interested in keeping track of progress in

the engineering development of a system,
we feel that at some point in the
management hierarchy there exists (or

should exist) a single program manager who
oversees the greater system that would be
interested in all of the milestones
regardless of how they are classified.

Iterative Process Milestones

One interesting conclusion reached by
our group came after a discussion with
respect to the meaning of milestones in an
iterative environment, This environment,
for example, is one in which a computer
program keeps cycling back through 1its
development phases perhaps because it has
not passed an operational test, This
could be a computer program that has been
certified to be bug free and is in fact
running satisfactorily, but has not yet
completed the Fine Tuning subphase of the
Deployment Phase.

16

The milestone that indicates 1f the computer program has not passed
termination of the Fine Tuning subphase the <criteria established for that
must have associated with it a set of milestone and is considered bad, the
metrics which are used to Jjudge the program manager can be viewed as sitting
quality of that computer program. This at Node 3, Now he is faced with multiple
quantitative data is used by a management alternatives to decide upon. For example,
decision maker to help him decide when should the program be killed? Should the
that computer program is ready to proceed program be allowed to proceed while that
into the Modification subphase of the life particular computer program is sent back
cycle. for more work and so on?
Implications of Milestones Similarly, if we take the middle case
for Decision Making at Node 2 where a computer program is

determined to be marginal based upon a set

Figure 2 {llustrates a toy model of a of milestone quantitative criteria, there
decision tree which contains three again would be several alternatives from
possible states of nature that might occur which the decision maker must choose.
at a milestone in a software 1life cycle.
Branch A indicates that the software is of When we reflect upon this type of a
good quality, Branch B fair quality, and model, we can see the striking resemblance
Branch C poor quality. to the program progress review briefings

given to corporate managers by program

If the computer program is judged to managers with xrespect to various aspects
be of good quality at that milestone, and of their programs. It is common practice
the decision maker is viewed as sitting at to show categories such as budget,
Node 1, he might be faced with only a software, hardware, organization and
single alternative with respect to what schedule in red, yellow or green colors
the pext direcsive to issue will indicating "in trouble," ""potential
be..."continue on. problems’ or ''no problems,' respectively,

i Start of next
s;f:cc::v}f;k Path of accomplishment C:H;‘;{?r:gn Management decision taig or
activity

Problems encountered

leading to marginal software

“‘Continue on’’

—(n)

“Get more tests’

Start Over again

““Start over again”’

—(v)

Kill the Program -

Fig. 2 Software management decision tree concept.

in terms of

What this really means
and software

decisions, decision makers,

life cycle management is simply this, a
milestone is meaningless unless it has
associated wmetrics. The metrics must be
such that they provide meaningfull
information to the manager at whatever
level so that he can make appropriate
decisions, that is, choose the best

erceived alternative course of action

ased upon the information presented.

Milestone Metric Research

Now the basic question remains: How
do we measure attributes of software such
as quality or completeness at required
milestones?

Some work 1is being done in this area
but clearly not enough. An extremely
important research direction for the Army
to pursue is to develop a set of common
measurable milestones for SLCM projects.
Each milestone must have associated with
it relatively easily measured attributes
of the products delivered at the end of
the activity it stands for,

Furthermore, we must all realize that
progress of software through 1its 1life
cycle 1is not measured by time, but by
accomplishments. Thus, there must be some
description of measurable criteria with
which to determine physical evidence of
progress. These milestone accomplishment
critera must be complete enough and in
sufficient detail that the resulting
measurements will be sufficient to
generate relevent management decisions.

Postscript
Federal ADP Reorganization Study

The workshop's featured speaker, Mr,
E. Larry Dreeman, reported on the findings
of the Federal ADP Reorganization Study
National Security Team which he chaired.
Mr, Dreeman's team was chartered to
investigate ADP activities in the
Department of Defense, This was a portion
of one of 31 Federal government
reorganization projects initiated by
President Jimmy Carter, The overall
project study ogjective was to investigate
ADP in the Federal government and to
recommend inprovements %n the government's
use of information technology;
specifically, to 1improve delivery of
government service, improve acquisition
management and use of information
technology and eliminate duplication and
overlap,

Mr. evoked a

Dreeman's presentation

very active response from the audience as

17

it appeared that many of the findings and,

in particular, the recommendations were
quite controversial, After the
presentation, I had the opportunity to

discuss several aspects of the study with
Mr. Dreeman in more depth that led to his
request for a formal input to the study.
A summary of my personal response to this
request is outlined below for the benefit
of those who attended Mr., Dreeman's
presentation.

Central Problem

My 18 vyears of involvement 1in the
military computer resource management area
has led me to conclude that:

of
ADP
- the
of

The primary cause of many
today's Department of Defense
management problems involves
obsolescence of the centralization
ADP management control policies.

This does not mean that I do not agree
that there should be centralized
policymaking and guidance to prevent chaos
in this 8-10 billion dollar a year
Department of Defense business area., The
distinction I make is between policymaking
and control.

Recommended Solution

I recommend that policymaking for
technical issues continue to be
centralized in the form of a Department of
Defense ADP '"focal point" to serve as an
interface with other Agencies, the General
Services Administration, the Office of
Management and Budget and the Congress,
In addition to the single interface
function, the focal point will develop
policies and guidance in the areas such as
the following:

a. Standardized methodologies
for the acquisition of automatic data
processing equipment (ADPE).

b. Guidance
standardization
languages for use
Defense,

with respect tc
of computer programming
within the Department of

c. Guidance and standardizatior
of computer and peripheral interfaces
within the Department of Defense.

d. Standardization
elements and codes
environment

of dats
used within the ADF
in the Department of Defense.

The problem with the centralization
scheme as it exists today is that the
authority for purchasing computers and
associated software is retained at

excessively high levels. This hinders
effective equipment and software
replacement programs designed to prevent
the massive hardware obsolescense problem
accurately reported by the National
Security Team in its "Draft Report”

(Reference 5).

Thus, I strongly recommend that:

The authority to purchase
computers and software should be
decentralized to the maximum extent
possible subject to centralized

technical standardization policies.

Furthermore, the purchasers of
and commercially-available

in the DoD should use a
"systems approach' similar to that
used for the acquisition of weapon
systems hardware and software using
the Armed Services Procurement
Regulation and as further defined in
Air Force Regulation 800-14 (Reference
6).

ADPE
software

This means that DoD functional
managers should have more control over the
type and quality of ADPE and software that
is used within their areas of expertise
and jurisdiction,

Relationship of ADP Management
to ECS Management

We must recognize that the reason for
the success of recent (I stress the word
recent) defense system procurements
involving embedded computer hardware and
software 1lies not in the use of the
"excluded" special-purpose, militarized
computers but in the perspective of the
program manager who is developing a system
which is not an ADP system but rather an
aircraft, tank, missile or spacecraft,
This same embedded computer system
philosophy can be profitably applied in
the ADP environment.

For example, any DoD personnel manager
should treat his ADP equipment, computer
programs, supplies, people, computer data,
and all other computer resources as but
component parts of his 'personnel system."

The ADP manager should no longer be
permitted to unilaterally dictate what
specific types of equipment are necessary

and allowable for the personnel manager to
perform his function. A more effective
role for the ADP "single manager' should
consist of providing the personnel manager
and other 1line and staff managers with
technical advice and service as requested,

18

Arguments Pro and Con

Critics of the above ""systems
approach" to ADP management state that we
would soon return to chaos in the ADP
environment if we dismantle the current
strict review process which proceeds from
the lowest levels all the way up through
the General Services Administration and,
incidentally, takes nine months to a Yyear
and a half for approvals for equipment
over $50,000.

realistic and well
thought out policies developed by the
centralized ADP opolicy officials can be
enforced by existing Inspector General and
auditor organizations within the
Department of Defense., It is their job to
make sure that all policies dictated from
higher authority are, in fact, carried out
at the lowest levels of all military
organizations, Therefore, the technical
policies, such as the use of specific
higher order languages and standard data
elements and codes can be easily checked
for compliance during the normal visits to
DoD installations by these enforcement
agency representatives,

I contend that

With respect to the argument that the
costs could go out of control 4if this
centralized authority 1is not retained at
the highest levels, 1 contend that the
budgetary process itself will hold downm
costs, probably to & greater degree than
one can achieve with centralized
management control, 7The reason for this
is that the functional 1line or staff
manager receives one slice of the budget
pie as his total share for any given
fiscal year. 1If it can be proven to him
that a new piece of ADPE can recduce costs,

improve organizational efficiency,
increase functional system performance, or
has any other purpose that is worth
spending some of his limited monetary

resources on, he will probably approve it.
However, all functional managers within
that commander's organization are also
trying to get their own pieces of the same
pie slice, This adversary situation with
respect to the budgetary process is normal
in all areas at the present time to the
best of my knowledge, except for ADPE. 1
believe that if ADPE authority for
purchase is decentralized to the lowest
functional levels possible, the normal
budgetary process will be much more
effective in reducing overall ADP costs
than does the present highly centralized
management control system.

Finally, with respect to the potential
problem of not having expert help if there
is not a strong central technical
organization that retains the authority tc
pass judgment on ADP purchases, I submit
that a very effective organization already

exists to help users with tnis functionm,
the Federal Simulation Center (FEDSIM).
This agency can be called in by any
functional manager in the Department of

Defense as a consultant to help them with
the technical problems of performance
evaluation, monitoring, equipment

tradeoffs, make or buy decisions, source
selection, competitive procurement, and so
forth.

Postscript Summary

the three basic points I
the National Security
Mr, Dreeman, &re as

In summary,
will be making to
Team Chairman,
follows:

a. A serious problem with ADP
management in the Department of Defense is
the obsolescense of Brooks Act
implementation policies.

b. I recommend that ADPE
technical issue policymaking be
centralized to conform with the intent of
the Congress for single focal point
cognizance and reporting.

c. I recommend decentralizing
the authority to _purchase ADPE and
software such that functional managers are
given the authority to develop their ADP
resources just as they develop all other
resources at the present time.

Thus, I do not believe there are any
compelling reasons for continued
centralization for ADPE control at the

highest levels of DoD management, and
strongly request that the final National
Security Team recommendations to President

Carter be modified to incorporate these
views,
In Conclusion
The Dynamics Theory Group lists the

following conclusions and recommendations

as those deserving further consideration
by the Army in its attempt to improve
software life cycle management:

1. Appropriate management methods

that are applicable to different phases of
the life —cycle do not vary across
different classes of software. However,
the specific management method used can be
and usually is different for different
phases of the software life cycle.

2, We recommend that our proposed
software life cycle management model shown
in Figure 1 be used as a strawman baseline
for a follow-on research effort by the
Army to add conceptual detail to the
individual life cycle subphases.

19

feel that additional emphasis
placed on the management
in the Deployment Phase of the
software life cycle, especially with
respect to the problems of transfer of
development management responsibility to
the support management team., We recommend
that the Army follow up on this point with
further research to develop an effective
system (software) deployment strategy.

3. We
should be
activities

4, We recommend that the Army focus a
significant research effort on the
critical problem of trying to determine

the point when software ''fine tuning" is
sufficiently complete to be able to
confidently transfer a system to the
Support Phase of its life cycle.

5. The planned cost of software

embedded in a system should terminate with
the initial entry of the system into the
System Modification subphase of the
Support Phase of its life cycle.

6. The answers to the questions of
whether or not ECS or ADP systems require
different types of management practice or
different types of life cycles are simply
yes and no, respectively.

7. Milestones should represent the
termination of specific activities or
tasks and also provide a measure of the
degree of completeness (or quality) of
those activities. Hence, they must be

uantitative to be useful to management
or judging the progress of a system

through its life cycle, If they are not
quantitative in nature, they simply cannot
adequately support this necessary
measurement function.

8. An extremely important research
direction for the Army to pursue 1is to
develop a set of common measurable
milestones for SLCM projects, Each
milestone must have associated with it

relatively easily measured attributes of
the products delivered at the end of the
activity it stands for.

Acknowledgment

As Chairman of the Dynamics Theory
Group I wish to gratefully acknowledge the
contributions of both the participants and

the many attendees whose active
participation provided the material
contained in this report. 1In particular I
thank the participants, namely, Thomas

DeLutis, Melvin E. Dickover, Harvey Koch,

J. David Naumann, Francis N, Parr, Leon
Stucki and Robert Thibodeau for their
individual contributions that helped make

the workshop a most stimulatin
for all of us. & experience

20

References

1. "Major System Acquisitions,' DoD
Directive 5000.1, January 18, 1977.

2. Manley, John H., "Embedded Computers -
: Software Cost Considerations," in
. AF1IPS Conference Proceedings, Vol, 43,
; 1974 PNatioral Computaer Conlference,
‘ Montvale, N.J., AFIPS Press, , PP.
‘ 343-347.

3. “Management of Computer Resources in
Major Defense Systems,” DoD Directive
5000.29, April 26, 1976.

4, '"Brooks Bill,"” Public Law 89-306, 40
u.s.C. 759.

5. "National Security Team Report
(DRAFT), Federal Data Processing
Reorganization Study, President's s

Reorganization Project, 7 July 1978,

6. ''Management of Computer Resources in
Systems,” Air Force Regulation 800-14,
vol. I, 12 Sept 75, and "Acquisition
and Support Procedures for Computer
Resources in Systems,'" Air Force
Regulation 800-14, Vol., 1II, 26 Sept
75, Department of the Air Force,
Washington, D.C.

II. LIFE CYCLE MANAGEMENT METHODOLOGY
DYNAMICS PRACTICE

Chairman: Dr. Raymond W. Wolverton
TRW Defense & Space Systems

PANELISTS

George J. Schick Harold Stone
Barbara C. Stewart Ivan Jaszlics

Gerald M. Weinberg

R ~ L

SOFTWARE LIFE CYCLE MANAGEMENT - DYNAMICS PRACTICE

Summarized by
R. W. Wolverton

INTRODUCTION

Seven position papers are given here that re-
flect the practice and experience of each partic-
ipant in the dvnamics of software life cycle
management. On the basis of his past contributions
to the field, each participant was invited by the
U.S. Army Institute for Research in Management
Information and Computer Science (AIRMICS). Along
with the position papers, the participants dealt
extemporaneously with a list of questjions offered
bv the ATRMICS technical chairman, Dr., Victor
Basili. Three of the questions were selected for
group discussion as having the most interest at
this time and the greatest potential leverage in
reducing cost and risk for future AIRMICS projects.
The findings in these three areas, management
dynamics, software tools, and life cycle mainte-
nance, are summarized here. The participants for
this session of AIRMICS 78 are:

George J. Schick, University of Southern
California

Barbara C. Stewart, Honevwell Svstems
Harold Stone, University of Macsachusetts

Ivan J. Jaszlics, Martin Marietta, Denver

Gerald Weinber, Ethnotech, Inc.
Ray W. Wolverton, TRW Systems Croup

Kenneth Kolence, Institute for Software
Engineering

In addition, all attendees (approximately 50) par-
ticipated in generating answers to the three
questions chosen bv the group (i.e., participants
plus attendees).

OVERVIEW

R. C. McHenry and J. A. Rand of IBM contrib-
uted a position paper, although circumstances
prevented its oral presentation. They believe that
the very nature of top-down development allows it
to hecome a powerful tool and technique for system
integration, thereby leading to earlier and more
complete system readiness than would otherwise be
possible. Thelr key point i1s that by fncremental
development and testing, a new discipline is

possible (termed transition management} that -
properly implemented - does not require added
development time for testing. This is an extreme-
ly powerful hypothesis for future AIRMICS study.

G. J. Schick and C. Lin of USC show quantita-
tive techniques for determining the manager's
preference for prior distributions that are needed
in software reliability models using Bavesian
probability theory. Predictive reliability models
assist the manager is estimating the number of
errors indigenous to the software system under
development and the amount of time required to
reduce the indigenous error population to an
acceptably low level. Their solution lies in an
automated question and answer dialog with the
practitioner to find his level of indifference to
alternatives that imply statistical fractiles. 1In
this way mathematically tractable estimates of
error-reduction can be made that incorporates the
practitioner's software experience and intuition.

One of the stated assumptions is that soft-
ware development is not a branch of mathematics
but rather a special form of communication, person
to person and person to machine, B. C. Stewart of
Honevwell Systems offers a new discipline for
alleviating the intrinsic difficulties of communi-
cation, particularly earlv in the design process,
that combines an analysis model and analvtical
procedures. Her methodology has the benefits of
assuring that both design goals and organizational
goals are met, providing a means to evaluate the
cost effectiveness of the organization's design
methodology: and establishing a measn by which
differing design methodologies can be quantita-
tively compared.

Harold Stone of the Universitv of Massa-
chusetts and Aaron Coleman of the ULS, Army
(CORADCOM) report on their hardware/software 1ife-
cvele model that measures the cost of stan-
dardizing the computer instruction set together
with the support tools for the military computer
family (MCF). Their results show that the GYK-41
(PDP-11), out of the set of four semifinalists in
the MCF study, ranks as the best choice for the
MCF under their criteria of comparison, Thev use
a 22-vear interval for acquisition and deplovment
of candidate MCF computers and support software -
1980, 1985, anu 1990 - with each lot deploved for
10 vears. Thelr model 1is successful in identi-
fyving the critical cost-drivers and in estimating

]

their relative importance, although it is not
intended to predict dollar costs with accuracy. A
crucial factor in the 1life-cycle cost analysis is
that the greater the value of the software tool
base, the lower the cost per line of applications
code. Thelr model estimates the tool value as a
function of time to reach time varying estimates
of productivity. Their analysis shows that the
GYK-41 (PDP-11) offers a cost savings of $1.5
billion over the next lowest contender.

C. E. Valez and Ivan J. Jaszlics of Martin
Marietta, Denver, present a position paper on use-
ful evaluation tools in the design process, Their
hypothesis, supported by initial experience, is
that design languages are emerging for identfying
requirements, design components, and design speci-
fications on the basis of which coding can
commence. They believe that several design
languages apply at different levels of the design
process. One of the main purposes of a given
design language is to provide the human the
capacity for interaction beyond the first available
solution to the best solution for his requirements.
Two often neglected phases in a design language
approach are included in their potential solution:
the definition of the man-machine interface and
computer resource requirements. They believe that
an integrated software design concept is essential
to comprehensive definition of the system devel-
opment interfaces. The importance of program
design languages for the upcoming generations of
software cannot be over-emphasized.

Gerald Weinberg of Ethnotech, Inc., expresses
his views on why the expected gains from program-
ming tools have been slow in arriving, and often
disappointing when they do arrive. He believes
that the problem lies in the failure to understand
the processes by which new technology is intro-
duced. The role of training has been left by
default to computers, under the assumption they are
better or cheaper than human teachers. His
solution is to provide an overall climate for
professional learning in which both the computer
has a role and the human teacher have a role.
Probably all the tools needed to solve the
elaphant's share of the software development pro-
blems have alreadv been created, at the cost of
per'.aps a billion dollars a year, a micro-
organismic sum of money has been spent on training
pecple to use those tools. This means the practi-
tioner does not use the tools accessible to him.
We have spent billions for "tools", but not even
pennies on understanding what is needed to create
the professional technical leaders who will use
them. The answer he advocates is to take computer
training out of the realm of computers and put it
in the brains of people.

R. W. Wolverton and B. W. Boehm summarize the
more important lessons learned in developing a
cost model for TRW, The kev issues are first a
need to develop agreed-upon criteria for the value
of a software cost model, second a need to evaluate
existing and future models with respect to these
criteria, and third a need to emphasize construc-

22

tive models that relate their cost estimates to
software phenomenology and project dynamics. A
potential solution to these needs is given by nine
criteria defining the goodness of a software cost
model. With respect to the emphasis on dynamics
of the AIRMICS workshop, the structural form of
the cost model can be used at RFP time (e.g., it
does not ask for input data available only after
design) and at all subsequent development cycle
reviews., As more and more verifiable input data
become available they replace the estimates, un-
known data estimates are made current, and the
manager can see the inception-to-date information
on the estimated cost to complete and time to
complete. Each cost element can be traced to a
work unit in the work breakdown structures (WBS),
and the manager can readily spot the trouble
areas through management by exception techniques.
A tie-in to the WBS is essential to show what is
(and is not) included in the resulting cost
estimate.

Kenneth Kolence, president of the Institute
for Software Engineering, stands by his position
that the field has advanced to the point where we
now have a discipline of-software physics. What
is needed to tap this resource is an understanding
of what this means relative to work performed, the
capacity to take on new work, and the use of the
metrics now observable. One then organizes the
work of software design around a forecast for the
use of facilities. The problem regarding soft-
ware acquisition scheduled for the mid 1980's is
to define in 1978 what data is really needed,
collect {it, analyze it by the laws of software
physics, and incorporate it into an action plan.

MANAGEMENT DYNAMICS

Any person who influences the irreversible
use of resources is in truth a manager whether
his title 1is that or not. Dynamics deals with
forces and their relation primarily to motion
or time behavior but sometimes also to the
equilibrium of the acts of management. The word
also implies patterns of change of growth. There-
fore, management dynamics refers to the forces
inherent in the process of leadership and their
interplay as a function of intensity and fre-
quency.

Startup Conditions

Software management has the same major
components of organization and enactment as the
successful management of any other complex human
endeavor, with two significant observed excep-
tions. First, managers do not generally recog-
nize that the software development process has
more degrees of freedom than another project of
equilivent dollar value. This unique quality
accentuates the recurrent people-oriented
difficulties associated with span of control
through not knowing preciselv what to control, by
what criteria, at what timely milestone events.

Senior managers are now in decision-making

roles by a traditional reward system based on
earlier career successes, where success is defined
by the manager's management. Often, the recog-
nition is based on earlier projects for which the
software component was smaller and the criteria

of success not clearly focused. These early pro-
jects were often managed through intuitive, and
undescribable, methodologies. Inevitably, this
situationr is accompanied by schedule slippage,
cost overrun, and low-quality field software.

To further aggravate this condition, these
(now) older in situ managers are overtaken by
events in the form of accelerating advances in
computer technology and still more degrees of free-
dom, increasingly difficult management decisions
(shifting from, say, two~valued deterministic
choices to multi-valued probabilistic choices),
and the conflict created by the need for "detach-
ment"” for the sake of overall visibility on the
one hand, and the need for "involvement" for the
sake of in-depth understanding on the other hand.
If the top-level manager does not understand the
complexity of the dynamics of the software devel-
opment process he is in difficulty. What a
manager does not understand he cannot manage. His
recourse, often adopted unconsciously, is to move
from active management to reactive administration.
He is now driven by events, and the otherwise
manageable project becomes unmanageable.

Paradoxically, too much 'understanding" of

the problem to be solved gives rise to too many
good ideas for its solution. This can lead to
expensive gold-plating at one exteme or paralysis
and delay at the other. Moreover, always under-
lying the management of software is that software
tends to be invisible unless made visible.

Second, managers do not generally recognize
that a software project is of the same nature as a
comparably sized non-software project. Software
implementation needs a capital base for estab-
lishing an overall professional working climate,
i.e., modern computing facilities, compilers,
operating systems, effective support tools, trained
people, and a support group including configuration
and data management specialists. The work is done
by human beings, not machines. Some managers do
not acknowledge that software is, in fact, manage-
able, and this leads to self-fulfilling prophecy
that it is not. Software is a thing, a product,
an asset, it is as real as hardware and can be
managed.

Ideal Management Circumstances

The ideal ingredients of software management
can be identified unambiguously. However, it
appears that some things are so obvious as to be
overlooked or not applied when they are easily
within the manager's grasp. Management should
accept and define the problem and set team goals.
He should not accept fuzzy or {ll-defined project
requirements; other non-software technical dis-
ciplines would reject many jobs readily accepted
by software managers. The most crucial step is

23

for the manager to properly subdivide the problem
into manageable-sized packages of work and assign
clear lines of authority and commensurate respon-
sibility.

He must assign tasks to individuals (e.g.,
sub-project managers) and set individual goals.
One way to do this is to define subordinate
objectives that, in turn, support senior objec-
tives. The manager assigns a measurable task to
an individual for completion by a certain date at
a cost not to exceed so many dollars. Then the
manager can constructively monitor and assist the
work objectives by periodic reviews organized to
compare outputs against objectives, including cost
and schedule predictions versus actuals. A work
breakdown structure is a proven technique for
helping to avoid ambiguity. He has existing tools
to aid him in doing an effective job.

Management Aphorisms

Here is a collection of aphorisms put forth
by this group during the ATIRMICS 78 workshop.

a) Ensure that common standards apply to
all parts of a project. Ensure that
the interfaces between modules are
managed at a high enough level for the
consequences of any change to be
appreciated. No one can enforce an order
that the consequences of a change be
appreciated,

b) Simple projects can be managed by a
traditional 'scalar chain” line-staff
relationship. Complex projects, which
are more the norm, require staffing from
different disciplines. A matrix organ-
ization is required. Then conflicts
ensue between line and project; this is
called divine discontent.

c) Within a matrix organization the emphasis
in technology will shift over the use-
ful 1life of the software. The manager's
management should have a written plan to
change the organization to suit the
demands of the software evolution. If
the plan is not written down it does not
exist.

d) A manager should have a technical back-
ground and explicit training in manage-
ment skills. The manager should be
relieved of the requirement that he is
the most technically competent. He
should have the intrinsic ability to
motivate and develop loyalty. This
circumstance now meets the criteria of
Murphy's Law.

e) The ideal manager has superb management
training, but nobody notices.

f) Everything good happens early. Unmanaged
projects do not, unfortunately, have a
high infant mortality rate. To bring
an unmanaged project under ccntrol

requires changing of the project manager,
revising the project plan, developing a
new schedule and budget, and revising
objectives. Otherwise, there is nothing
to it.

g) If vou are a good leader who talks little,
they will say, when vour work is done and
your alm fulfilled, "We did this our-
selves" (Lao-Tse). This view does not
succeed east of Los Angeles.

h) Few programmers become major officers of
the company. It is probably true that
programmers have a less clearly defined
career path than most professionals.

i) To sell an idea to management, make sure
management thinks of it first, There is
nothing that cannot be accomplished if
one doesn't care who gets the credit. The
fact is that evervbody does care who gets
the credit.

i) No project will succeed if the energy is
directed toward placing blame. One can
find out if a project is beginning to be
in trouble by asking the secretary who in
the project is building a white file.

k) Hardware is built from documentation.
Software is built and then documented.
This documentation is often for an earlier
version than "as built.'" Matching the
documentation to the software as delivered
is a management goal, frequently unreal-
ized,

1) Decisions regarding hardware design and
implementation are nearly irrevocable,
whereas, the software manager can naively
operate from the false premise that he can
correct faulty decisions at a much later
stage in the development process. He gets
to have this attitude for one project
only,

m) Some human behaviorists who think about
"management success' are grounded in the
view of Machiavelianism, especially the
view that politics is amoral and that any
means however unscrupulous is justifiable
in achieving political power. Many
successful managers become politicians and
vice versa.

SOFTWARE TOOLS

A tool is something necessary in the practice
of a vocation or profession, as a scholar's books
are his tools. This section gives an overview
and minimum detail on the wide-ranging concerns of
this group on software tools.

Table T shows a few up to date software tools
for tvpical development cycle stages. Literally
hundreds more exist, If one views maintenance,
especially enhancement maintenance, as a series of
mini-development cvcles, one can apply essentially
the same tools to the sequence of planned enhance-
ments during maintenance. Under these conditions

24

a glven tool may have a useful lifetime of 10 or
more years. Although this group did not consider
the quantitive aspects, sav, of the breakeven cost
for tool development, a plausible case will be
made for the cost effectiveness of soundly con-
ceived (and transportable) tools based on group
experience.

sroup Observations About Existing Tools

The key goal regarding the future of manage-
ment information tools is increased visibility bv
the project manager at any time. This goal
implies walking to a local terminal and getting
project actual versus planned expenditures,
estimates of time and cost to complete, and other
statusing indicators especially management by
exception indicators, for example, the cost from
inception to date for a particular module ex-
ceeding a predetermined threshold such as 10
percent, within a certain period.

Four steps are involved in reaching thig
goal:

a) Clearly define the management infor-
mation process in an organization.

b) State requirements for tools.

c¢) Tmplement tools starting with the areas
with the highest pavoffs.

d) Audit existing tools for current effec-
tiveness. Identify candidates for
replacements.

One premisc {s that the managment process
is driven by the product structure. Management
tools must be unified with product description
tools. The tools must be interactive in the sense
that task networks can be readily modified as the
design developes. The task partitioning problem
is drfven by the design partitioning problem and
the dvnamics of circumstances over time.

Project aggregates (i.e,, man loading versus
time and modules complete versus time) should be
made accessible on a periodic or demand time
basis. To meet this goal the actual progress
must be compared against the planned progress.
The ability to estimate needed resources from a
skeleton design {s implied.

Product design tools mav be categorized as
existing tools or advanced. Existing or avail-
able tools customarily include assemblers,
linkers, program preparation alds (editors, etc.)
debug assist tools (path tracers, etc.) and high
level language manipulators (compilers, etc.).
Advanced tools are defined to cover very high
level languages (automatic-program generators,
etc.), products to assit In creating and debupging
executive and real-time programs, products to
assist to performance analysis, and products to
assist in verifying distributed data processing
configuration,

25

Table I. Existing Software Tools

Language and

Too) Name Function Life Cycle Phase _ Computer _Where

Software Cost Estimates effort for development Proposal and major Fortran

Estimating cycle in man-months, by phase milestones CDC 66XX TRW

Program

Software Analyzes requirements by Conceptual Pascal TRW

Reguirements relational data base €DC 7600

Engineering

Program

Manuscript Text is entered to a computer Conceptual and as Compass TRW

Preparation file by remote terminal and needed CDPC CYBER 74

System edited CDC 6000 Series

Program Design Oesign is written in structured Definition Fortran Caine,

Language English by six contrul constructs 360/370, 1108, farber
6XXX, DEC-10, and
SEL 932, Gordon,
PDP 10/20/11 Inc.

High-Powered Provides graphic display of Definition fortran TRW

Accounting scheduling and resource 6XXX, Calcomp

Resources information

Program

Performance and Represents systems by event Definition and Fortran TRW

Configuration logic tree's before any code development CDC 6X00, 7xC0

Analysis Model exists

Software Design Supparts design, code, test Development Jovial J73, TRW

and Verification and maintenance of DAIS (simulation tool) Cobol, Assy,

System mission software fortran
DEC 10

[proPgsat L CONCEPTUAL DEFINITION | OEVELOPMENT | INTEGRATION

Go-Ahead Typical Development Cycle Phases Operational Demenstration

Why People Do Not Use Tools

This group believes that the topmost issues
is the need to invest time to educate and train
the practitioner. As viewed by the manager, the
payoff for investment of time is not clear and not
presently well documen*ed or understood.

Some existing tools work poorly and bias
managers (and programmers) against future use of
any new tools. Programmers do not willingly learn
about the existence of new tools accessible to
them, Progressive change is difficult to instill.
Standardized abstracts and ascession lists would be
helpful here, especially in taking away the unknown
amount of research into the structure of the tool
and its utility from questionable sources, Tools
are not easily transported; what worked well for
one project may be commercially impossible for
another project because the computer and configura-
tion or language is significantly different.

In sum, people do not use tools because:

a) They do not see a direct benefit to them,

b) They do not understand the specific tool
and perceive a high risk of failure, low
chance of success, or poor initial tool
behavior that could be blamed on them,

¢) Management has coerced the project as a
whole into using a specific tool, despite
inadequate training and planning for its
introduction. People wait for somebody
else to be first.

d) They are pressed to meet a difficult
schedule and have no time to experiment
with a new tool or the accompanying new
techniques.,

e) They perceive that the proposed tool does
not work at all in their particular
environment. On the other hand, they may
not know the tool exists,

In contrast, people do use tools because they
see a direct benefit to them, management encourages
them in various ways, they see a good chance of
success (and no alternative without it), it is new
and exciting, there is good introduction and
training strategy, they have slack time in which to
experiment, they are rewarded by management
measures for its use, and the tool is a part of a
package they use anyway.

Intrinsic Advantage of Tools

In the sense used here, tools should encourage
a standard approach to solving a recurrent problem.
The form of the output should be such that it
directly meets the informational requirements of
immediate and successive activities. For example,
a project management tool should generate reports
that directly compare the actual completion status
with the planned status without the inconvenience
of working among multiple reports.

Tools can and should encourage improved human

26

performance by putting off tedious or repetitive
actions that can be done by an algorthm into a
computer. The person is then free to look for
patterns, trends, and relationships, analyze
results, and bring to bear his own creativity.

Tools can and should encourage a professional
attitude toward work. The individual can more
easily experiment and do creative tasks. He is
producing openness and visibility into an other-
wise invisible process. He can improve product
quality by systematically reducing indigenous
errors and know that he has done so. In turn, the
manager sees an effective allocation of tasks
between humans and machines according to quality
and then efficiency if quality has been assured.
More consistent results means more manageable
results,

Tool Selection Criteria

The proposed tool should automate any
repetitive part of the programming or design
task, increase productivity, accuracy, and improve
morale.

The proposed tool should automate the ex-~
traction and correlation of various data files
containing management or technical information
about the program.

The proposed tool should assist in formal-
izing software development procedures to assure
a consistent management approach and development
methodology. A tool should enable people to
operate at a higher level of competence. Some
things only a tool can do and do well, e.g.,
indicate which branches of logic have and have not
been exercised for a given level of testing and a
selected data state vector.

The proposed tool should:

a) Meet all known requirements, have
capacity for growth, accommodate a
reasonably wide application of use,
and have a long expected lifetime.

b) Be maintainable, transferable (within
technical limits of the intended
environment), and adaptable for training.

¢) Fit well with other tools already in use
or planned. 1t should compare favorably
with the capability of the tools it will
become a part of.

d) Compensate for a deficiency in resources
or organizational layout. Tt should
meet cost/benefit criteria established
by group standards.

e) Deal fairly with human factors, for
instance, by converting from arbitrary
internal units to external engineering
units understandable by a person.

LIFE CYCLE MAINTENANCE

By commonly accepted practice, the software
life cycle consists of the development phase and
the maintenance phase taken collectively.

Contract developers have been known to talk about
the "life cycle” when they really mean the 'devel-
opment cycle." This clarification must be made

at once. A typical distribution of resources for
a large-scale software project might be 10C

people for two years in the development phase and
35 people for eight years in the maintenance phase.

Basic Maintenance Circumstances

In this hypothetical case, the development
phase exists from contract go-ahead to opera-
tional demonstration and government acceptance by
DD Form 250. The maintenance phase, by definition,
is then the interval when everything that is not
development happens to the software package. Of
the 480 man-years hypothesized, 200 man-years is
expended in development and 280 man-years in main-~
tanance. Thus about 40 percent of the life cycle
resources are given over to the building (i.e.,
development) and about 60 percent to keeping the
software package in the existing state of readi-
ness, efficiency, or validity (i.e., maintenance).

With the majority of the out-of-pocket
expense to the government going into something
we all call maintenance (60 percent versus 40
percent), unquestionably the most important
factors in maintenance need to be examined
closely. Unfortunately, although maintenace is
the most visible and costly phase it is the least
documented and understood. 1In some areas of
specialization (GTE-AEL), they have a defined
life cycle of about twenty years (i.e., the life
of a telephone switch). Probably in this example,
good records of reliability and cost are avail-
able but the ability to generalize from the
specific is not productive for, say, a command
and control application.

One reason the industry does not have good
answers to strategic-planning issues in mainte~
nance is that the government writes a contract for
development and thea writes a different (annual)
contract for maintenance, often under a level of
effort (LOE). All the thinking goes into devel-
opment because the LOE type of maintenance is
managed by a policy of sequence and priority.

The maintenance contractor, who may or may not be
the developer, accepts any and all work required,
provided that each task is listed (sequenced) by
the customer's priority needs. Not a great deal
of strategic planning is needed in this case,
since the manager is reacting to his customer's
needs on a day to day plan. Usually any task
appearing on the lower 80 percent of the list is
never completed (Pareto's Law).

However, there are some things that can be
said and some intelligent steps the contract
developer and the government can itake to deal
with this circumstance.

The group considered

four key concerns with varving levels of detail:
enhancement maintenance, introduction of a new
svstem or repair of an old system, design trade-
offs for maintainability, and e¢ffects of maint-
enance of development.

Enhancement Maintenance

One way to deal with the question of pre-
dicting and measuring the effective life span
for a software system i{s to adopt the point of
view that a software system will be around for-
ever. Let us define "forever” as 20 vears.
After the original package is delivered to the
operational user, the new point of view is that
the original version will continuously evolve
under a mini-development cycle concept. Then,
everything the contractor does in development is
just repeated in the enhancement maintenance
circumstance.

Feasibility studies, tools, management pro-
gress monitoring, test and acceptance are carried
out just as in the original development. Except
now it is harder. Less core space is available
and more skill is required to shoe-horn in the
add-ons. Arbitrary style of programming may have
been replaced by structured programming or by a
program design language so the interface with
existing software is more difficult. Regression
testing requires more skill, perhaps more soph-
isticated tools, and a test rationale (perhaps
with analytic models) must be available for
judging how far back to go with the test pro-
cedures to verify mission readiness given that
changes were made to the previsously accepted
code.

Two computers may be required, one to use
online to keep the operational program going and
another to develop the product improvement in
consideration of debugging, system testing, and
operational readiness demonstration. The main
thrust of the discussion is that enhancement
maintenance can be thought of an extension of the
development process. The release of product en-
hancements is usually by block release, i.e.,
work can go on continuously but new software is
introduced incrementally.

Introduction of a New System (When to Redo an 0ld
System

If we try to deal directly with the question
of effective life span, we are faced with a
dilemma. We believe the problem cannot be solved
in a good or explicit wav. The question of tech-
nological obsolescence is not independent of
economic considerations such as life time owner-
ship, variable (and unknown) user requirements,
rapid new technology advances, and other prac-
tical considerations. Here, for example, a
contract developer could not rationally allow a
budget percentage to cover maintenance problems
of all kinds. He would not be cost competitive
in his initial proposal. Experience shows that
if an equally qualified builder is more than

10 percent higher in cost than the lowest bidder
he will most likely lose. He cannot realistically
support an argument that in the long run his
higher bid cost will prove to be lower when con-
sidered over the entire useful life time of 10 or
20 vears.

After a certain point of growth, even with
modern virtual memory machines, the svstem will
have to be redone. Or, more easily argued is that
the software has to be redone because the user
wants to put an existing program (with some en-
hancements) into a completely new computer con-
figuration: new language, new compiler, new data
storage and transfer method., aund revised proto-
cols for real-time interrupts. The question,
however, is why put an existing and mission ready
software package into a new computer configuration?
In a more general sense, why are the perceived
attributes of the existing software package not
equal to the job at hand?

There are no inherent properties that can be
used to measure (predict) the life span of a svs-
tem. Given that we can all agree that the efiec-
tive lifespan in finite, the life span can be
observed to be over when:

a) The unit cost/transaction exceeds the
projected unit cost of a new svstem by
a sufficient margin. This estimated
cost should include re-run costs due
to low reliability.

b) The function that the syvstem serves bhe-
comes obsolete within the sponsoring
organization. For example, a plant mav
be closed and a software svstem (e.¢.,
process control) designed to serve it
no longer serves anv purpose.

c) Defense measures require that a hereto-
fore benign ground svstem must be trans-
portable and the computer hardware able
to survive a particular nuclear exposure.

In short, it is time to redo the old svstem
when it is judged incrementally cost-effective to
recreate the svstem than to enhance it further.
This can oceur because radical changes in the fun-
ctional capability are required, or because the
introduction of new hardware makes possible such
a radicat change. 1t can also occur when the ef-
fort required to maintain and to enhance the ex-
isting svstem begins to grow so rapidly that {t is
cheaper to redesign ft. If a suitable measure of
complexity can be found, a plot of this measure
against svstem age is a valuable ind{cator of when
the system is approaching a state in which main-
tenance or enhancement is no longer practical.
Some evidence suggests that there is an upper
limit to the size of a change which may be made to
a system at one time, and that the original struc-
ture of the system is a severe constraint on the
nature of the functional changes which can be ac-
commodated without initiating a complete redesign.

Desipn Tradeoffs for Maintainability

Too many factors are involved in designing
for maintainabilityv to consider the issue thor-
oughly. However, some isolated findings offer
promise for future ATRMICS studies:

a) CGreater effort in the beginning (defini-
tion and design) by stressing ease of
understanding, modularity, and ease of
use (human engineering). This will be
a commercially impossible goal unless
some reward system is built into the
government procurement policy (i.e., an
incentive for doing more costlv work).

b) Fmphasis on software quality assurance
and use of all available techniques to
ensure correctness early in the software
life cvcle. The more promising relia-~
bilitv models should begin to be intro-
duced into development test and bevond.

¢} Use of machine assists to detect pro-
frammer errors.

d) Use of library maintenance and other
tools to assist in correct changes to a
provram,

¢) dreater emphasis on adaptability., Fxper-
fence shows that large systems suffer
continual change in the first 12 months
and that after 2 to 5 vears tvpicallyv
verv little of the original code is left
in the svstem.
Urects of Maintenance on Development
Maintenance constiderations plav a role in all
phases of development. At each stage the product
of that stapge is examined (at everv design review,
code walk=through, unit/string testing etc.).
The results cre reviewed and a decision made as to
whether the stace should be reiterated, realizing
that deficiencies occepted at an carlier phase
will result in maintenance difficulties later.

Perhaps the onlv workable approach to reduc-
ing the cost of maintenance is for the government
to adopt a procurement policv in which the govern-
ment explicitly acknowledges maintenance as part
of the life cycle by the kind of preocurement con-
tract applied in the first place. CGood procedures
now exist for orderlv change procedures to be
built into the contract. However, the implication
usuallv is that the sponsor and the contract de-
veloper are in adversary roles. Constraint will
be needed by the povernment program office in
keeping their requirement stable, which in turn
keeps the design and test activitv stable and
matched to {ts necessary and sufficient mission
demands, no more and no less.

MODTFIED DELPHI_METHOPOLOGY

In this group we used an each-to-all Pelphi

method in working toward group analvsis of a
common problem. A position was given orally by
cach participant, and these appear as a written
paper in the next scction. Where clarification
was needed, questions were asked about a given
puosition. Basically, more information was being
transferred than there was time to dig into all
of it. Questions were posed and the group nar-
rowed them down to a somewhat manageahle list.
There were many more questions than answers,

and a fact probably worthy of notice. Research
is being applied to many problem areas, but the
more problems that are solved the more questions
are asked. Man's reach shall alwavs exceed his
grasp.

One small facet of the interesting group
dynamics that occurs when many competent people
are in the same room grappling with the same
questions is given in the next two worksheets:

a) Pre-discussicn self-rating sheet that
is concerned with the participant’'s
image of himself with respect to his
peer group before getting into substan-
tive issues. In this case the results
include this session, and John Manley's
Session I. The mean (x) and variance (s)

b) Post-discussion evaluation sheet that is
concerned with the participant's evalu-
ation of the results of two days of
group endeavor to answer questions of
interest to the administration of the
AIRMICS 78 workshop. As shown almost un-~
animously the participants see the major
problems as people-oriented and hardly
at all machine-oriented. Such a con-
clusion is probably not very surprising.
However, the worksheets may help the
reader to understand some of the comments
rising from this session. Every state-
ment made cannot help but reflect the
cultural attitude, subjective bias, and
knowledge of each participant.

is indicated graphically on each question.

30

SOFTWARE LIFE CYCLE MANAGEMENT WORKSHOP
Atlanta — 21 - 22 August 1978

Code Number
1. Pre-Discussion Seif-Rating Sheet
1. As an SLCM participant, my skills in Very highly No skill
software life cycle management would skilled at all

put me about here, relative to others.

1 2 3 4 5 6 7 8

2. | think my ideas are in basic ayreement Yes, Absolutely No, not at all
with the rest of the participants.

1 2 3 4 5 6 7 8

3. | know most of the people in the SLCM Yes, No, none
workshop very well. pretty well at all

4. | have some definite ideas about what the Yes, a lot No, none

goals of the AIRMICS SLCM workshop are
and should be. 1 2 3 4 5 6 7 8
5. | have been in software life cycle management Yes No
for longer than most of the other people here. *
1 2 3 4 5 [} 7 8

6. | have a lot of experience in SLCM practice Yes No
outside of a university environment. L

7.) am anticipating that the SLCM conference is Yes, | think No, | think it
going to be a good thing for goal-setting. it will be may be a
waste of time

1 2 3 4 5 [] 7 8

8. My approach to problem solving for this con- Yes, absolutely No, not at all
ference is best described as “‘people oriented.”

1 2 3 4 5 6 7 8

9. My approach to probiem solving for this con- Yes, absolutely No. not at all
ference is best described as “‘machine oriented.” *
1 2 3 4 5 6 7 8

| would be pleased to
attend the next AIRMICS e again.

31

SOFTWARE LIFE CYC..E MANAGEMENT WORKSHOP
Atlanta — 21 - 22 August 1978

Code Number

Post-Discussion Evaluation Sheet

| feel satisfied with the __._*7

results in general. 1 2 3 4 5 6 7 the results at ali.
| got some ideas from . A

1 2 3 4 5§ 6 7 the feedback.
In general, | agreed with Vv
the ideas in the feedback. 1 2 3 4 5 6 7 in the feedback.
| could express my ideas *

1 2 3 4 3 6 7 | wanted to say.
| feel as if | really ¥
wantecd to talk to people. 1 2 3 4 S5 6 7 at all.
| think people understood
my reasons pretty well. _— A

1 2 3 4 5 6 7 reasons.
{ think the SLCM con-
ference structure could
be operational in goal t operational at all.
setting more generally. 1 2 3 4 5 6 7

i think it went too fast. 1 2 3 4 5 6 7 | think it went too slowly.

I’'m not really happy with

| didn’t learn a thing from

| disagreed with everything

| couldn’t really express what

| didn’t fee! the need to talk

| have a feeling people didn't
understand or think about my

{ don’t think this SLCM con-
ference structure could be

1 would not wish to attend

A S

I1I. LIFE CYCLE MANAGEMENT MEASUREMENT
MODELS - PREDICTIVE

Chairman: Mr. Lawrence H. Putnam
Quantitative Software Management, Inc.

PANELISTS
Barry W. Boehm Bev Littlewood
Amrit L. Goel John D. Musa
Mier M. Lehman Robert C. Tausworthe

Marvin V. Zelkowitz

32

LIFE-CYCLE MANAGEMENT MEASUREMENT MODELS: PREDICTIVE

SUMMARIZED BY

Lawrence H. Putnam

Quantitative Software 4anagement, Inc.

Current life cycle models have been inade- Plan Control Evaluate
quate to predict cost, schedule, quality and re- r
liability. Group III examined the problem from Function .. .

three perspectives: management issues, pheno-

menological behavior and reliability measurement Cost
and prediction. Time ..
f i
Central to the thinking of all was the notion - Be adaptive to actual project data and
that models were needed that provided adequate
requirements changes (i.e., must be
accuracy, faithfulness to the process, simplicity ¢ ime— i d mic)
of use, timliness, and addressed investment and e-varylng or dynamic).
management questions directly in management para- - Provide engineering accuracy (and uncer-
meters -- time, cost, manpower, cash flow, rate tainty measures until it is safe to
of progress, effectiveness and reliability. ignore them because of standards conven-
tions (e.g., building codes, electrical
The fundamental issues identified are: codes, etc.) in cost, schedule and qual-
e Lack of standard definitions and ity
metrics for the life cycle - Provide sensitivity profiles.
~ activities - Be phenomenologically based.
~ phases - Relate produce to resource comsumption

- (both statically and dynamically) and

milestones the technology being applied.

e A detailed process model is needed - Be capable of future growth.

® A catalog of existing descriptive
and predictive models is needed.

The catalog should contain:

- Be able to adequately treat known and
future system types and development i
environments.

— Description of model
- A i
ssumptlions This group was composed of: Lawrence H.
- Purpose Putnam, oi Quantitative Software Management, Inc.,
Chairman; Barry W. Boehm of TRW Defense and Space

- Capabiliti iti d tive
apa es (pos ve and negative) Systems Group; Amrit L. Goel, Syracuse University,

® A careful evaluation of existing Meir M. Lehman, Imperial College of Science & Tech-
models is needed (This should be done nology/England; Bev Littlewood, City University/
interatively with the creator to be London, England; John D. Musa, Bell Telephone Lab-
sure that important characteristics oratories; Leon G. Stucki, Boeing Computer Ser-
and nuances are not omitted in sum- vices, Inc.; Robert C. Tausworthe , Jet Propulsion
marization). Laboratory; Claude Walston, IBM Federal Systems

e A good life cycle model should Division; and Marvin V. Zelkowitz, University of

Maryland.

possess these characteristics:

- Consider all activities and phases

The Group III people found it worthwhile to
gub-divide themselves into three sub-work groups,
and to devote their attention to the special areas
of expertise in which they could deal with the
subject matter in greater depth and address a
smaller sub-set of the questions posed by the
Army in a more comprehensive manner. Three sub-
ject areas were to be explored. (1) Reliability

- Relate management parameters to
management responsibilities

Models. The people who worked on this sub-task
were John Musa, Bev Littlewood, and Amrit Goel.
(2) Life Cycle Models. The people concerned with
this sub-task were M. Lehman, Claude Walston,
Marvin V. Zelkowitz. (3) Management Issues and
the Resource Control aspects that fit within

the managerial framework. Barry Boehm, Bob
Tauseworthe and Leon Stuckl addressed these
topics.

We will consider these in the order of
Management Issues, Reliability Models and,
finally, the Life Cycle Models.

MANAGEMENT ISSUES

"he Management Issues sub-task group con-

.ed itself with the following questions:
What are the major ingredients in the management
of software? What makes it unique? What makes
it different from hardware? How should the
organizational structure relate to the problem
to be solved in the different phases of develop-
ment? To what extent should managers be tech-
nically trained? To what extent should techni-
cal personnel be managerially trained? Are there
different classifications of software that re-
quire different methods of management (For exam-
ple, embedded computers and software vs. non-em-
bedded computers and software)? Are there pre-
dictable crises in the software life cycle, and
if there are, what are the early indicators
associated with these crises?

Embedded within these broader questions then
is the overall set of fundamental questions
which we hope will be answered. They relate to
what needs to be done to improve the process.

We might define these related actions under the
broader heading of impirical studies--basically,
what we need to know to understand the process
better. What information should be collected
about the process, the product, and their inter-
action and for what purpose? What kind of
experiments should be performed? How can we cap-
ture and express the idea of program complexity?
How can program managers be convinced to conduct
esperiments on their programs? What progress is
being made on the transfer of learning from one
project to another project within an organiza-
tion and between organizations?

An integral part of management, of course,
is resource planning and control. Within this
framework are those things having to do with
performance measures that will measure the actual
progress of a project against some time base
which we commonly called the milestones and in
terms of rate of expenditure of the resources
allocated to the project (which typically are:
manpower, dollars, computer time). The ability
to relate performance measures to the consumption
of resources has been especially difficult in

33

managing software products. Attempts have been
made in terms of productivity. Productivity has
been defined as total number of delivered source
lines of code divided by the effort required to
produce the code. Basically, people are unhappy
with this definition in that it doesn't really
relate to the rate of progress on the project.
It is a difficult measure and in some sense may be
counterintuitive to the common industrial inter-
pretation of rate of production used in the con-
text of the industrial production line.

The management sub-task group wrote these
managerial concerns into a group of problems in
which they identified the key factors, recommended
an approach, and gave a prognosis with respect to
rossibilities for success and the time frame in
which it might be possible to achieve the solu-
tion to the problem. The first problem identified
by this group was problem: The inadequate accur-
acy of current models. This has resulted in fre~
quent overruns. Parameters are often difficult
to estimate, and the non-standard terms and
metrics that are used in these various models
complicate interpretation.

KEY FACTORS:

There are no standard metrics and terminology
within the industry, or within major subdivisions
of the government. There are inadequate empirical
applications of the models (i.e., there is no
practical application and subsequent feed back so
that the models are selt-improving).

RECOMMENDED APPROACH:

Establish standard definitions; establish
refined data collection procedures; collect addi-
tional empirical feedback leading to refinements
and tuning of models to make them better.

TIMING:

Reasonably near term (2-3 years).

® PROBLEM: Models need to be evaluated with
respect to a set of management-ori-
ented criteria.

KEY FACTORS:

Timeliness, updatability, definition, objec-
tivity, detail, parsimony. The models should be
extensible, contractible, tailorable. These
should be a pragmatically understandable corres~
pondence between criteria. The models should
support sensitivity analyses. And the models
should be adaptive, that is, they should respond
to the project dynamics; what is actually happen-
ing should be fed in as it occurs and the model
should adapt to that in terms of the future pro-

jection it makes for the next few time intervals.

RECOMMENDED APPROACH:

There is a need to extract meaningful manage-

ment criteria from these Key Factors. Evalua-

tions should be performed to establish a standard

accepted set of terminology to develop new
classes of models that will handle a broader
range of phases and activities within the soft
ware development and maintenance process.

TIMING:

Reasonably near term (2-3 years), leading to
longer term pay-offs in the medium range
(5-7 years) period.

® PROBLEM: Current models are not well related
to the project status indicators.

KEY FACTORS:

The definition of status indicators, (for
example, CDR, or Critical Design Review).
Obsolute software standards (e.g. MS-1521 and
MS-881). Inadequate detail (e.g. work break-
down -structure, and lower level milestones).

RECOMMENDED APPROACH:

Define a more detailed life-cycle process
model (include a greater number of lower mile-
stones within the work breakdown structure).
Relate global status indicators to the detailed
process model. Update the relevant software
standards. Relate the predictive models to the
detailed process model.

TIMING:

Reasonably near term (2-3 years).

® PROBLEM: Current models are inadequate in
relating productivity and relia-
bility.
KEY FACTORS:
The terms are difficult to define. There

are no standard definitions.

RECOMMENDED APPROACH:

Develop new models relating productivity
with rellability; establish standard accepted
definitions that adequately describe in a
meaningful way productivity and relfabilfty fea-
tures that we want to see within the models.

TIMING:

Reasonably near term (2-3 years).

® PROBLEM: The current models do not adequately
cover some key issues:

- maintenance, conversion, block
updates

- the impact of new technology

KEY ISSUES:

- Understanding the underlying phenomenology of
the software building process and how to use
it in the model.

- the unknown domains of applicability of the
models.

RECOMMENDED APPROACH:

- determination of areas of applicability for
existing models (include underlying assump-
tions).

- develop additional models to cover the poorly
developed issues and areas; this implies
more detalled definitions and a greater data
collection effort.

TIMING:

Reasonably near term (2-3 years). Some areas
will require better data for significant pay offs
and this will necessitate longer periods of time
within the mid-range period (5-7 years).

® PROBLEM:

A lack of models for other areas of manage-
ment purview

- other resources (e.g. core requirements),
other situations (e.g. distributed net-
works, micro-computers)

- personnel career progression

- 1ife cycle dynamics of software as a
"Business Game" model similar to what is
now done in the large business schools
in which a complete business scenario can
be played out and development outcomes
determined depending on the input and the
actions of the players.

KEY_FACTORS

- Complete absence of models of this type

- Non-standard situations and organizational
structures within various business enti-
ties and various government organizations.

-

- subjective versus objective decision
making

- requirements for such models are not
recognized

RECOMMENDED APPROACH:

- create awareness for the value of such
models

- develop model goals, requirements,
criteria, etc.

- develop adequate models

- train management to use the models in the
decision making process

- sell management on the utility of using
such models

TIMING:

Reasonably near term (3-5 years). Prospect
for success is good in modeling quantitative
measures (e.g., life cycle dynamics, core).

RELTABILITY

The reliability subtask group address the
general set of questions concerned with models
but specifically directed their responses toward
reliability-oriented models to put together an
ordered set of criteria for good predictive
models in the reliability area.

Accordingly, the problems addressed in this
section are ordered in terms of their priority
of need.

@ PROBLTM: Need for data.

KEY FACTORS:
- A need for execution time data rather
than calendar time data.

- better planning of data collection efforts
(this should be done in conjuction with
reliability researchers)

- need cost impact data

- need data on resources used in identify-
ing and collecting the data.

RECOMMENDED APPROACH:

Detailed studies should be undertaken to:

- specify what data should be collected
and how.

- study should be reviewed by the principal
regearchers in the field.

TIMING:
Near future (2-3 years). Prospects for

success are good.

® PROBLEM: Need a comparative study of existing
reliability models.

KEY FACTORS:

- an analytical/anatomical comparison
- predictively comparison

- a physical interpretation of the para-
meters of the models

- simplicity and ease of understanding and
communicating in each of the models.

- range of applicability.

RECOMMENDED APPROACH:

A serious analytical and empirical compara-
tive study to ensure a correct interpretation of
the models and the assumptions that have used
been used in creating the models.

TIMING:

Such a comparative study should start in the
near future and possibly could be completed by
1980.

® PROBLEM: The need to validate the assumptions
used in existing models.

KEY_FACTORS:

- the independence assumption of failure
time

- assumption of an exponential distribution
being the underlying relevant statistical
distribution,

RECOMMENDED APPROACH:

A study should be carried out.

TIMING:

Near future (2-3 years). The success in this
endeavor would depend considerably on the availa-
bility of data.

® PROBLEM: Relationship between test and opera-

tional environments.

KEY_FACTORS:

- the effect on the reliability measures.

- how to construct an appropriate test
environment.

RECOMMENDED APPROACH:

Research in the fundamental areas.

TIMING/PROSPECTS:

Time of conclusion 1s not clear. This
appears to be a difficult problem.

® PROBLEM: Relationship between program struc-
ture and reliability (including
combinatoric relationships).

KEY FACTORS:

- modern programming practices

- module switching (N-th order Markov pro-
cesses)

- information-theoretic approach

RECOMMENDED APPROACH:

Further research

TIMING/PROSPECTS

Medium term (3-5 years).

® PROBLEM: What quality performance measures
are meaningful and useful? What
decisions would be supported? How
might management decisions affect
selected performance measures?

KEY FACTORS:

avallability

cost impact measure

- predict project completion

1

tradeoffs between quality measures and
time/cost.

RECOMMENDED APPROACH:

Manager survey study.

TIMING/PROSPECTS:

Near term (1-2 years). Propects for success
are good.

36

® PROBLEM: Getting software reliability concepts
accepted and used.

KEY FACTORS:
~ selling--convincing managers that these
concepts and techniques are useful.
~ integration and simplification of concepts.

~ adapting reliability as a system require-
ment. One possible approach is that
reliability should be considered as one of
the elements in an evaluation of a proposal.

Other recommendations are included under the
other problem areas.
TIMING/PROSPECTS:

(2-5 years). Contingent upon success in
other problem areas.

® PROBLEM: What sort of error taxonomy is useful?

KEY FACTORS:
- need an end-use orientation classification
scheme
- need to collect data

- Is a multi-variate model needed to handle
error severity classes?

RECOMMENDED APPROACH:

Conduct a study on planned uses of error
data to develop an appropriate classification
scheme.

TIMING/PROSPECTS:
Medium term (2~5 years). Prospects reason-

ably good.

® PROBLEM: How is changing technology going
to affect software reliability
measurement?

KEY FACTORS:

- microprocessors

- networking

RECOMMENDED APPROACH:

- Augment Rome Air Development Center micro-
processor study

- initiate networking study

TIMING/PROSPECTS:

Near term (2-5 years). Start now. Prospects
are good.

The Group dealing with LIFE CYCLE SOFTWARE
MODELS AND METHODOLOGIES FOCUSED ON THREE
MAIN AREAS:

e Initial answers to the questions posed
by AIRMICS.

® Some tentative early definitionms.

® Some recommendations for further work.

Question No. 1. What needs to be known to
understand the development process better?

e activities - the relationship between the
the activities, the flow between the acti-
vities, and the products coming out of the
activities, for example design for main-
tainability.

® Measurement quantities. We need all the
classes of the measurement quantities ~-
resource consumption measures, rates of
accomplishment, or progress, and quality
metrics i.e., a capability to measure
these actual quantities and relate them to
the accomplishment that is being made,
measures of progress, quality, product-
ivity, as well as just resource consump-
tion in accomplishment of time-related
milestones.

® We need real data for each of these acti-
vities and measurable quantities.

e A full analysis is possible now. It
requires a concerted effort by a team of
experts spanning the disciplines involved
in the total 1life cycle.

Question No. 2. What information should be
collected about the process, product and their
interactions?

e The answer to this question is in part an
answer to question 1, above. But we also
need to know for what purpose ? The
answer to this would appear to be to model
and use for:

Management, control and evaluation.
e Improvement of the process.
Neither can be done adequately in order to

achieve full 1ife cycle effectiveness without an
adequate understanding.

37

Qﬁestion No. 3. What experiments and evalu-
ations need to be performed?

e controlled experiments should not be used
because:
~ We cannot isolate the problem.

- Extrapolation is not possible for small
projects.

- It is too expensive.

The recommended approach should be to conduct
studies, gather data and tie back to analysis
based on common definitions and standard measure-
ments, techniques and models.

Question No. 4.
complexity?

How can we capture program

e There are a number of existing investi-
gations now ongoing.

e We should monitor these carefully.

Question No. 5. How can we convince managers
to experiment on thier software projects?

e A straight answer is —- Don't attempt to
convince them to experiment. The real
question is how to persuade managers to
collect data for others to use. (There
is a real problem here because of fear
that collecting the data will be used
against managers to show that they wasted
resources, that they didn't manage effect-
ively.)

e A partial answer to this question is:

(1) feedback. It should be a two-way
flow. Data is captured from the
managers to measure progress and to
help improve the process, then they
should get the benefit of the feed-
back to help them manage better.

e A second partial answer is:

(2) automate the collection effort; make
it painless to do so that it doesn't
interfere or take away from the effort
that is devoted to the project.

Question No. 6. What progress is being made
on the transfer of learning from project to pro-
ject and within organizations?

e Not much. But workshops, such as the
Software Life Cycle Management Workshop
and conferences on the subject of soft-
ware engineering help. At least they
bring to the forefront an awareness of a
lack of transfer of learning from project
to project, within and between organiza-
tions.

In order to leave an effective transfer of

learning, definitions and common terminology are
essential.

Question No. 7.

What are the criteria for a

good predictive model?

Parameters of the model should be:

(1) based on a standard set of defini-~
tions. For example, time, effort,
manpower, end product (quality of
source)

2
3)

parameters should be measurable.

parameters should reflect the environ-
mental needs, not product attributes.

Each model should adequately cover factors
causing variation in model output.

The set should be adequate to cover the
entire life cycle.

A clear understanding of the domain of
applicability.

Should support management activity i.e.,
management activities of planning, control
and evaluation should be able to be dis-
played against each function together with
the associated function time and cost of
the activity. The table below shows this
concept.

Plan Control Evaluate

Function

Cost . .
Time

Question No. 8,

How can statistical and ana-

lystical models be combined?

Question No. 9.

We should not concern ourselves with this.
We consider it non-issue and it would more
appropriately be left to individual re-
searchers to apply the appropriate academ-
ic tool in a solution to the problem at
hand .

Is there a need for a stan-

dard set of models?

Yes.
(@Y
(2)
(3)

to cover the life cycle.
for different environments.

to handle factors involved in the
process, e.g., resources, relifability,
growth., There would be all kinds of
time phases {n order to take care of
overlapped activities, for example.

38

Question No.

10. Do we need a new set of

models, or are there already models that adequate-
ly satisfy the need?

Question No. 11.

The answer to this seems to be that there
already exist adequate models flow which
to build upon, but we need to have a cat-
aloging of these models to define their
capabilities, the underlying assumptions
and the validity of the results that they
will yield. We need an extension in the
terms of the agreed upon definitions and
we need an extension of these models to
satisfy the criteria in response to ques-
tion No. 7, that is, it should satisfy the
management activities matrix -- the plan-
ning, control, and evaluation, and should
identify the functions, the time and the
cost of each of those activities.

What are the components of

an overall software engineering methodology?

Question No. 12.

there should be a statement of objectives
how to do it

a means for quantitative evaluation (What
is being done and achieved)

manageable

executable by normal people in a normal
environment

a definition of the range of applicability

Where should software tech-~

nology be going?

Question No. 13.

In terms of products, which would include
microprocessors and their support soft-
ware, the technological thrust should be
to provide complete functional specifir .-
tions and to be able to tally a defined
set of standard interfaces.

A continuous Life Cycle in which each
activity fully supports all those that
follow.

There should be high level environmental
objectives and parameters.

"Are there standardizable

methodologies?" supposes that there is a need
within the Army and within the Department of

Defense for standardization.
taxonomy .
volved in the answer.

This implies a
There would be three dimensions in-~
The three dimensions are:
Environment

Activity (phases)

What is being addressed (for example,
cost, reliability, performance).

ey

Question No. 14. The effect of software
engineering requirements and environmental factors
are fundamental to this. The answer to this is
adequately covered in the responses to the earlier
questions.

Question No. 15. How can we characterize the
methodology? The answer to this is again the
answer to 13.

Question No. 16. Is there a way to measure
the effective life cycle.

. The answer appears to be yes and, as an
example, the evolution dynamics of Belady
and Lehman is an approach that provides
considerable insight.

Question No. 17. When should a system be

redone? We need both static and dynamic indicators.

e Study is needed in this area to classifyv
and catalog what these indicators should
be.

e Current practices in industry may be help-
ful in this classification action.

With respect ot the general questions, what
are the priorities? We should go after solving
those issues relating to life cycle management of
software. It appears that the number one priority
is to establish a common set of definitions. All
of the others are important but they are hindered
by a lack of required definitions. All these pro-
blems that have been identified solvable in the
next five years. Most of the ones that have been
identified and commented upon are solvable in the
next five years if the effort, direction and re-
sources are focussed on their solution.

What should next year's questions be focussed

on?
e Agreement on a common set of life cycle
components, or phases.
® Status of the current research now on/
going.
TENTATIVE DEFINITIONS
1. large: A software project is large if it

involves at last two separately managed
groups.

2. Life cycle: The life cycle of a software
project encompasses all the activities from
first formal conception until final abandon-
ment. When we refer to "life cycle" of an
activity/phase, it must always be qualified
to some extent, (for example, we should refer
to the development cycle protion of the soft-
ware life cycle).

39

RECOMMENDATIONS :

e Data collection and definitions. Recommend
setting up a standing committee for soft-
ware life cycle management data collection,
involving identification and definition.
This might be done by some organization
such as AIRMICS.

e Establish a catalog of methodologies and
models. There should bhe a group to ident-
ify, to improve and to recommend adoption
of appropriate mechodologies and models.

LIST OF NEEDED DEFINITIONS:

Productivity
Life cycle phases

1
2
3. Lines of code
4 Complexity
5

Software maintenance (modification, enhance-

ment, debugging, error fixing)
Error
Reliability (quality metrics)

Man month (effort measurement)

O 0 NN

Software (system)

10. Verification, validation.

CONCLUSION:

Good progress has been made in this software
lifecycle management workshop. It is felt that
the life cycle management workship is an important
forum focussing ideas for improvement in future
action. The results observed in this workship
appear to be fruitful and encouraging with respect
te what was identified and pointed out in the
first software life cycle workshop a year ago.
Centinuation appears to be clearly indicated.

APPENDIX TO REPORT GROUP 1I1

(Submitted by Leon G. Stucki)

I. PROGRAMMING ENVIRONMENT

Background

e Paradoxically, the software community
has automated everyone's work except their own.
e Isolated tools and techniques have been
developed.
e Software is still extremely labor inten
sive.
e Productivity improvements in software
construction has not kept pace with hardware.
e Software is rapidly becoming the limit-
ing factor in large systems.
® An automated programming environment
with an integrated set of tools for the manage-
ment, control, testing, and documentation of
each stage the evolving software offers a means
for greatly reducing software costs and improv-
ing software quality.
® Tools within an automated programming
environment should include:
-~ Source language level interpreters, for
statement-at-a-time execution and tracing
- Compilers, for both program debugging
(e.g., extended syntax checking and user feedback)
and optimizing
- Cross—compilers
- Text editors, CRT terminals
- Configuration management aids
- Automated verification and testing aids
- Interactive debugging aids
® Functions provided by a programming
environment should include:
- Mechanisms for controlling and document-

ing the communication process between users-ana-

lysts~programmer s-managers.

- A central repository, with supporting
data bases, for configuration management and con-
trol of all documentation and evolving program
representations (design and code).

- Quality assurance mechanisms for check-
ing adherence to project standards.

- Automated error collection and reporting
in support of both quality assurance and config-
uration management.

- A respository of test data and test re-

sults traceable to user acceptance/test criteria.

Current State

e Exaggerated claims have been and continue
to be made for isolated tools and techniques.
e Most program development is done with

severely inadequate tools.

® A compiler is frequently equated with a
programming enviromment. (In reality, a compiler
constitutes only one small, albeit important, com-
ponent of an automated programming environment).

® Much manual drudgery still prevails in
most current programming environments,

e Errors once discovered and removed may
reappear due to the manual processes currently
employed in building today's systems.

e Management visibility into the progress
of software development is woefully inadequate.

e Experimental use is being made of selec-
tive "proven" tool and technique concepts not yet
widely available (e.g., static and dynamic ana-
lysis aids).

Future Trends

e Programming environments will be designed

Question No. 14. The effect of software
engineering requirements and environmental factors
are fundamental to this. The answer to this s
adequately covered in the responses to the earlier
quest ions.

Question No. 15, How can we characterize the
methodology? The answer to this is again the
answer to 13.

Question No. 16. Is there a way to measure
the effective life cvele.

. The answer appears to be ves and, as an
example, the evolution dvnamics of Belady
and Lehman is an approach that provides
considerable insight.

Question No. 17. When should a system be

redone? We need both static and dvnamic indicators.

e Study is needed in this area to classify
and catalog what these indicators should
be.

e Current practices in industry mav be help-
tul in this classification action.

With respect ot the general questions, what
are the priorities? We should go after solving
those issues relating to life ecycle management of
software. It appears that the number one priority
is to establish a common set of definitions. All
of the others are important but they are hindered
by a lack of required definitions. All these pro-
blems that have been identified solvable in the
next tive years. Most of the ones that have been
identified and commented upon are solvable in the
next five ycars if the effort, direction and re-
sources are focussed on their solution.

What should next year's questions be focussed

on?
® Agreement on a common set of life cvele
components, or phases.
® Status of the current research now on/
poing.
TENTATIVE DEFINITIONS
1. Large: A software project is large it it

involves at last two separately managed
groups.

2. Life cycle: The life cvoele of a software
project encompasses all the activities trom
first formal conception until tinal abandon-
ment. When we refer to "life cyele” of an
activity/phase, it must always be qualified
to some extent, (for example, we should refer
to the development cycle protion of the soft-
ware life cycle).

39

RECOMMENDATIONS ©

e DNata collection and definitions. Recommend
setting up a standing committee for soft-
ware life cycle management data collection,
involving identification and definition.
This might be done by some organization
such as AIRMICS.

e Establish a catalog of methodologies and
models. There should be a group to ident-
ifv, to improve and to recommend adoption
of appropriate methodologies and models.

1LIST OF NEEDED DEFINITIONS:

1. Productivity

2. L.ife eycle phases

3. Lines of code

4. Complexity

5. Software maintenance (modification, enhance-

ment, debugging, error fixing)
6. Error
7. Reliability (quality metrics)
8. Man month (effort measurement)
9. Software (system)

10. Verification, validation.

CONCLUSTON:

Good progress has been made in this software
lifecycle management workshop., It is felt that
the life cycle management workship is an important
forum focussing ideas for improvement in future
action. The results obscerved in this workship
appear to be fruitful and encouraging with respect
to what was identified and pointed out in the
first software life cvele workshop a vear apo.
Cont inuation appears to be clearly indicated.

:
i
i
1
i
i

41

and selectively implemented.

e Hardware manufacturers will provide
machine/language dependent environments.

e Techniques will developed to isolate lan-
guage and operating system dependencies as much
as possible (e.g., attempts will be standardize
the interfaces).

® HOL standardization within DOD will make
it possible, for the first time, to achieve a rich
program development environment accessible to
larger numbers of people. ‘

e The "National Software Works" concept will
provide valuable knowledge on the success and
failure of many of these concepts in a distribut-
ed enviromment.

e Additional textual and graphical tech-
niques and automated tools will be developed for
representing, documenting, and controlling the
iterative nature of early phases of program de-
velopment (i.e., requirements and design).

® An integrated framework will be develop-
ed for applying numerous analytical techniques
(e.g., consistency and completeness of testing,
formal proof techniques for selected system
components, static/dynamic/symbolic analysis of
subsystems) .

e The theory of testing will receive more
academic attention than in the past.

e Improved techniques will facilitate the
certification and recertification process of

future systems.

II. LANGUAGES AND ARCHITECTURE

Background

e Testing has historically been and cont-
inues to be very costly.

® The concept of built-in test circuitry in
hardware is widely acceptable and increasing in
application. Similar approaches can and should
be applied to software.

e Top down elaboration and refinement of
acceptance/test criteria can be generated in par-

allel with system development.

e Acceptance/test criteria when incremen-
tally developed and included in source code via
special comments (or test assertions) have been
shown in experiment to Improve software quality
and reduce testing time.

o This concept can be used in conjunction
with both dynamic run-time analysis systems and

formal verification systems.

Current State

e Several prototype systems have been built
or designed; however, none are currently opera-
tionally used.

Examples:

- Stucki's experiments with a PL/1l proto-
type system at UCLA.

- University of Texas Gypsy programming
system.

e Current language work on DOD-1 has pro-
vided "an opening" through a very fuzzy assertion
concept.

- An assertion statement has been pro-
vided in the language, but its syntax and seman-

tics and use are unspecified at this time.

Future Trends

e Further procedures will be developed for:
- specifying acceptance/test criteria
during the system requirements phase, and
- refining the acceptance/test criteria
throughout the subsequent design and construction
phases.

e Language work will provide new and more
powerful constructs for expressing self-test and
monitoring concepts.

e Automated tools employing these concepts
will be able to greatly improve the testing and

maintenance processes.

ITI. FRAMEWORK FOR MODELLING AND STMULATION

Background

e Modelling and simulation have been used

widely by various analytical disciplines.

e The models of the various disciplines

have generally been incompatible.

@ There is a need to provide a framework and
data base mechanism for controlling and accumulat-
ing knowledge of a given system gained through
various modelling and simulation activities.

¢ Executive and utility functions include:

- Model/Data input preparation and storage

- Assistance in the creation and mainten-
ance of interfaces between models

-~ Assistance with output report prepara-

tion

Current State

o The Air Force is currently studying the
requirements for at least one such system (i.e.,
General Modelling System project under ICAM).

e Other industry efforts in CAD/CAM (com-
puter aided design/computer aided manufacturing)
are exploring this area.

e Interfaces to hardware are increasing as

digital computers replace analog devices.

Future Trends

e Prototype systems will be built and
studied. (Application specific systems will be
available.)

e Systems will support hierarchies of models
as well as interdisciplinary interfaces.

e Increased interaction will also be involv-

ed with actual sensor systems.

42

1V. LIFE CYCLE MANAGEMENT MEASUREMENT
METRICS - MEASURES & EMPIRICAL STUDIES

Chairman:

LL.A. Belady

Thomas .J. Watson Research Center

Bill Curtis
James L. Elshoff
Maurice Halstead

Maryann Herndon

PANELISTS

Alan N. Sukert

Sandra Mamrak
Thomas J. McCabe
James A. McCall

Isas Miyamoto

44

MEASURES AND EMPIRICAL STUDIES

Summarized by
L. A. Belady

1IBM Research

Following are the panel’s observations and
recommendations on the use of metrics to improve
the understanding and management of the software
development and maintenance process.

We see it encouraging that, compared to last
year's workshop, the present papers are more
evaluative than speculative. This trend should
continue, moreover, emphasis should be on
solleceting facts. During its short history,
software sciences have been characterized by a
large number of ideas, techniques and tools pro-
posed, with the result that there are now more
ideas available than necessary or possible to
apply. Yet there is a definite shortage of
tes'al ideas. Institutions and universities
have been developing new techniques and approach-
es to improve the process. At the same time
builders of large systems, and those who are in
charge of maintaining these extremely complex
man-made objects, are still forced to use anti-
quated methods. Neither party is at fault: the
problem is that there is no way to demonstrate
whether an idea is viable and whether it will
beneficially influence the development process.
Thus gathering facts about the software, and about
the process developing it, is the most important
next step, without which there is no hope for
successful transfer of technology.

But merely gathering facts is not enough.
Facts should be structured and appear in a format
that permits the comparison of systems, situa-
tions, processes. We are convinced that there
already exist proposed and quite promising
metrics which, although applied so far only to
limited samples, showed interesting results.
Consequently, instead of invencing additional
metrics and thus increase unnecessarily the
variety of available approaches, we must broaden
the basis on which existing metrics are applied.
Coming to mind are proposals by Halstead, McCabe,
the Belady-Lehman measures performed on large
systems, and others found in the literature. We
should concentrate on a handful of the most
promising approaches, align them with each other
and standardize.

We may gain confidence in these metrics by
examining their usefulness in three roles. One
role is to extract generally valid laws about
the behavior of large systems, large projects and
that of programmers. The second is to predict
the evolution of the very project or system being
measured. The third factor is psychological,
namely the feeding back of the observations, and
predictors based on them, to the people who
created or caused the process to happen. For
example Elshoff of CGM Research found it often
useful to make visible the otherwise invisible
object, the program itself.

In fact, we are talking about the existing
and sufficiently validated metrics, many of them
already applied, successfully and independently
of hardware characteristics, to monitor the
development of new projects and the maintenance
of older systems. Clearly, if we want to thor-
oughly and carefully evaluate the usefullness of
an approach, we cannot rely exclusively on com-
puter scientists and software engineers: other
experts must also participate. Psychologists
for example are trained to evaluate complex situ-
ations using the rigorous and well established
methods of experimental design and statistics.,
What we, therefore, propose is a multi-disici-
plinary approach toward the evaluation of the
already existing but sparsely used ideas in
order to weed out bad approaches, and to gradual-
1y improve and refine the ones, whose potential
use for anv or all of the above mentioned three
roles 1s immediate. 1t is also important that
we restrict measurements to a handful of observ-
ables, such as Halstecad's operators and operands,
and then deduce the other attributes such as
portability, modifiability, maintainability from
primitive metrics.

This leads us to the most difficult attri-
bute of the process productivity. While we
believe in its importance, we cannot accept fta
current unit of measure, namelv lines of code
per unit time or man-month. The reason for this
disbelief 1s twofold. First, most programmers
will be fust modifving and maintaining already
existing programs. Secondlv, in the future more
and more new programs will be constructed out of

of f-the-shelf components. Whether in modification
and maintenance, or svstem composition from larger
components, the line of code measure of producti-
vity immediately fails.

We measure productivity for perhaps two rea-
sons. One is to monitor costs and the second is
to predict the resources necessarv for the devel-
opment of new products. But the lines of code
generated 1s just one of the many components of
the total cost. Clearly, the qualitv of develop-
ment influences the cost of maintenance and modi-
fication, to be performed over a long period of
time. Thus, if we want to measure productivity
at all, then it has to be combined witi a metric
capturing quality. Only then can we have a solld
measure for prediction, as well as for comparison
of different systems and projects.

As already indicated before, the major ob-
stacle to progress and improvement is the d- . ffi-
culty to transfer technology, i.e., ideas irto
real-life production situations. Take, for ox~
ample, a methodology, which in a small environ-
ment, and mostly by the inventors of the method,
is believed to significantly better than the
currently used methods. First, the new idea must
fall on fertile ground. This means that not
only do the receivers of the idea have first to
be cducated on the novelty being proposed but
their mind has to be open and well informed about
the large variety of other alternatives. Only
then can a dialogue develop and factual evalua-
tion take place before commitments to the new
method. Second, the dominant factor in success-
fully transferring technology is that a new pro-
posal must demonstrate its viability by facts.
Otherwise there is no change to transfer method-
ology.

Project management is right in refusing
untested methods, untested ideas and techniques.
Proposals must be demonstrated to be beneficial
to the project. The major problem now is that we
do not have any place, any forwn or any organiza-
tional entity wherec at a reasonable scale, methods
can be tested and their viability dJdemonstrated.
Thus the creators of ideas remain frustrated.
They never see the utility of the ideas on which
they work so hard. Yet they should know which
ideas make sense and which not. It is better to
know that an idea does not make sense in real
life than to remain with the uncertainty about
its value and then blame the developers for not
implying something which is supported only by
speculation.

This leads us to the problem of where to
generate facts about new proposed methods, tech-
niques, tools and other novelty. Why does the
Army not set aside resources for the sole purpose
of validating the ideas created inside and out-
side its own organization? Unusable novelty

would rapidly disappear while usable ones find
thelr way into development, thus i{mproving the
overall quality of the software life cycle. But
even without such an ideal, separate orgartization,
systematic gathering of facts on real projects
would still tremendously improve the learning
process and encourage the flow of information
about techniques and tools because measuring with
agreed upon and aligned metrics facilitates
comparison of methods applied, projects managed
and software produced. Again, emphasis must be
on facts, and on measured and comparable facts.

At the workshop it became also clear that
our universe of discourse is not homogeneous any
more. There is no such thing as a typical pro-
gram, typical project, or typical situition.
What is, indeed, badly needed is the taxonomy,
the classifTeation of may aspects of the life
cycle, Before we even start measuring, we must
know precisely what we measure and what we com-
pare against. We must set up the metrics and
the measurements according to whether they are
about a small, medium or large size project,
whether we measure an on-line, interactive or
batch system or its development, and so forth.

The other important aspect of taxonomy is
that we have to recognize the [imits of valulity
of all the metrics and models which we apply.
Similar to physics, life cycle management must
also have scaling or model rule effects. FEvery
metric, every measurement method has its domain
of validity. Beyond this domain of validity, one
may have to live with false results or else must
adjust the metric with some suitable parameters.
Moreover, classification in the software develop-
ment and maintenance must be along many dimen-
sions: development, specification -nd standard-
izatlon of error classes, categories o1 programs,
processes and so forth, Brieflv: taxonomv i
one of the most important prerequisites to good
measurement and then to good and valid comparison
of the measured objects.

A specifically {mportant casc¢ for precise
Jefinitions and standardization {s the case of
milestones. In general, it {s desirable to sub-
divide a project in two dimensions. Time is
one of the dimensions: one would like to see
the precise transition point from one phase of
the 1ife cycle to another; for example the point
defined by the end of design and the bepinning
of implementation. The other dimension is the
product itself, namely {ts decomposition into
major components. It {s also necessarv to de-
compose the cost estimates and then the actual
cost items along both dimensions. Thus we must
find ways to precisely specifv and mutually
agree upon this two dimensional grid which is
applied over the total project in the time and
the product domains. Without agreed upon
definitions, such as the events which specifv

the transftion from one phase of the life cycle
to another, milestones have absolutely no
meaning and the{r use probably causes more
confusion than allow for sound monitoring and
comparison.

A few words about tools. We mean here tech-
niques and instruments which are necessary to
extract the facts and then form metrics: the
tools of Jdata wollestion, Interestingly enough
we all agree that there already exist built-in
methods, and techniques, which continuously
collect data which in turn are never interpreted
or used. In fact we believe that one could start
immediately at practically zero cost to gather
data without the additional building of new
tools. Compilers are an example. During compi-
iation large amounts of significant data are
collected, but after having produced the code,
the contents of internal tables become discarded.
Intelligent use of already generated data as a
basis for metrics and meaningful comparisons
within and between the different systems and
projects would be an almost zero cost activity.
We invite the Army to first look around for
already existing tools and data already being
gathered before a vast and expensive tooling up
of projects starts.

We consider the order of importance of
things to be done as implied in the order above.
Almost all proposals are doable within the next
five years, An exception is perhaps the error
taxonomy which should be a research effort. We
see also quite dark with respect to a good com-~
preheasive and sensible productivity measure.
The Workshop Chairman wanted some questions for
next year's workshop. Well, Barry Boehm pro-
posed, the best such question: '"What happened
to the recommendations of the previous year?"
We hope for the best.

We do not propose here specific recearch
activities now. Rather, we call attention agair
to the multi-diseiplinary approach. The role
or psychological research, particularly its role
fn evsluating proposed methods and techniques,
should be significantly increased. Experts from
soclology and management sciences should also
play an increasing role in life cycle related
research. Also, the use of time serles analysis
must be introduced. But in any case, future
research should be based on actual data, more-
over, orn allgned data. As long as scattered
research grcups all define and interpret their
own data, or use other people's unaligned data,
we cannot expect that transfer of knowledge from
one place to another be possible. In fart, we
propose that a central data baae und oloaring
houge for data be established within DoD in

46

order to provide badly needed factual information
as a basis for coordinated research. We under-
stand that the Rome Air Development Center will
soon be ready to play this extremely important
role. Alsv along centralization, we propose the
rigorous definition of the following ten most
important terms: the six or seven phases of the
life cycle: requirement, specification, design,
etc: complexity, quality, productivity (and
probably all the "abilities" which are so heavily
used, yet never defined). Some cfforts already
exist within the Alr Force, the Army and GTE
Corp. Without such definitions technical people
in large organizations are forced to use local
definitions or take as source the trade magazines
and professional literature.

In summary, we believe that a Jrastic and
masgive shift to Jact finding wul to orgoizing
the knowlede we already have, must characterize
the next years to come.

V.

POSITION PAPERS

LIFE CYCLE MANAGEMENT METHODOLOGY
DYNAMICS - THEORY

"Modeling, Measuring & Managing Software Cost"
John R. Brown, Boeing Computer Services Company

Improving the Signal/Noise Ratio of the System Development Process
Melvin E. Dickover, SofTech, Inc.

"A Step Towards the Obsolescence of Programming"
Harvey S. Koch, University of Rochester

"A Contingency Theory to Select An Information Requirements
Determination Methodology"
J. David Naumann & Gordon B. Davis
University of Minnesota

"A Life-Cycle Model Based on System Structure'
Francis N. Parr, Imperial College of Science
and Technology/England

""ae Implications of Life-Cycle Phase Interrelationships for
Software Cost Estimating"
Robert Thibodeau and E. N. Dodson
General Research Corporation

MODELLING, MEASURING AND MANAGING
SOFTWARE COST

JOHN R. BROWN
Boeing Computer Services Company
Seattle, Washington 98124

Abstract

An appraisal of past experiences relevant to
achieving awareness of the cost of software is
provided in terms of personal recollections about
the "good old days". The difference between what
we plan to do and what we really do in developing
software is discussed and identified as a signi-
ficant source of the cost problem. A striking
similarity between the properties of computer pro-
grans and the characteristics of the software de-
velopment process is suggested. Application of
computer program analysis tools to support de-
tailed evaluation of the development process is
proposed. Some potential benefits regarding im-
proved understanding of software production costs
are discussed and related to possible modification
of current software procurement practices.

Introduction

A few years ago a good friend of mine wrote a
very interesting letter entitled, "Random Thoughts
on Software Integrity, or, Nostalgia for the Good
01d Days". Among other things, the lTetter served
to refresh my recollection of the good old days
while stimulating something akin to at least a
recugh comparison of then and now.

In order to get my thoughts straight I found
I had to determine approximately when "“then" stop-
ped and "now" started. Having worked continuously
in one way or another with the production of com-
puter programs since sometime in 1960, it is per-
haps meaningful to identify some point in time
which separates the good old days from whatever
one might call more recent times. For me such a
delineation comes at approximately the midway
point, that is in late 1967 or early 1968. As I
pursued this train of thought, I became aware (or

finally admitted to an awareness) of certain facts.

1 believe that my findings are relevant to any
discussion on the claimed cost and difficulty of
developing software, and 1 hope to demonstrate
relevance in the following paragraphs.

In Retrospect

At some point early in my rambling thought
process on the subject, I found myself hard put to
answer the question, "When did things start to go
wrong?”. After considerable soul searching, I was
able to settle upon a fafrly specific time period

during which I had begun to understand that there
were certain problems associated with software
development. [t is especially important to note
that I have not intimated that softwarc develop-
ment was problem free prior to 1968 and plaqued
with problems thereafter. [have simply concluded
that in late 1967 and early 1968 something
happened which prompted (in me) a rather keen (but
previously non-existent) awareness of some woft-
ware development problems. [found it instructive
for my purposes to attempt to identify whatever it
was that was special or different about that point
in time and have related memorable characteristics
below in no particular order.

e | had recently been given my first real
fiscal responsibility within a major
(Targe scale) software development activ-
ity.

o I was, prior to that time, only remotely
aware of the fact that software is devel-
oped for a customer. At this point I be-
gan to be exposed to the needc, hopes,
fears, and frustrations of a customer ur
a regular (almost daily) basis.

o I was asked for the first time to deliver
a large program to a customer. [n parti-
cular, it was a program which containel 3
number of large, integral elements aboit
which I personally knew little or nothing

¢ I become aware of the existence of the
incomplete requirement specification.
More importantly, 1 became convinced that
it nplayed a critical part in a supposeuly
"formal" software development process.

o I was asked (albeit very indirectly) -d
not in so many words to compromise “i:-
tangible" quality in favor of tangible,
timely (on schedule) delivery. [was sub
sequently required to "explain away" pro-
blems or relate them to known errors and
lack of specificity in the requiremen:
specification.

1 am not at all sure which of the above was
most instrumental in changing my view of what - oft
ware development is all about. Perhaps more i
portant than any of the individual items was u..i-
mately the frame of mind which came from living
through and coping with these new (for me) experi
ences. The most striking characteristics of my

new frame of mind was a strong realization that
software development costs a lot of money.
Coupled with this was the growing feeling that
there were some customers who were hard to con-
vince that they had gotten their money's worth,
especially if the software did not work exactly
as expected or better. Unfortunately, speci-
fying exactly what is expected of software has
proven to be at least as difficult, if not more-
so, than specifying things in general [1,2,3].
In fact, a great deal of the thinking that has
been given to the cost and quality of software
has concerned the difficulties inherent in
specifying intent (i.e., requirements), test-
ing and demonstrating satisfaction of those
requircments, and providing for full and time-
1y communication between software developers and
users [4,5,6,7,8].

About Software Life Cycle Cost

So far, 1 have simply related some of the
details and subsequent conclusions derivable
from a conversation with myself about the good
old days. It is perhaps apparent that I have
rore or less dispelled the notion that there
really were any good old days, but rather that
there was a time when, for a number of reasons,
programming was fun and my worries were few.

As is often the case with my rambling
thoughts about scftware development, however,
1 eventually found myself taking a hard look at
the development process from a different but
potentially useful point of view.

Most, perhaps all, people who claim to know
how software gets developed roughly view the dev-
elopment process as a serial one which includes
the following (or eguivalent) events:

1) Concept (Requirements) Definition
2) Detailed Requirements Specification
3) Preliminary Design

4) Detailed Design

5) Code and Debug

6) Checkout

7) Test Planning

8) Test [xecution

9) Test Evaluation

10) Acceptance and Use

11) Maintenance (modification) and Re-Test
(as required)

There are many variations which are more or
less equivalent to the above and apparently many
different impressions about the proper ordering
of the events [9,10,11,12,13]. For purposes of
this discussion we can assume that some major
software development activities proceed through
phases leading to the above sequence of events
with the usual iterative occurrence of events 4
through 9.

48

It appears that we can be comfortable with
{and readily accept) a not-quite-accurate picture
of the development process to which we attritute
serial orderliness and implicit continuity. Fur-
ther, and more important, we are hard preised to
learn very much about the real costs of software
development until we can shed the notion of a
fixed sequence of events and come to grips with
the complex and highly dynamic interaction of
these events which is characteristic of much soft-
ware development activity. Fcr instance, if we
were to draw a flow diagram of the developrent
process {both "before" and "after"), we could well
ses ;he kind of contrast illustrated in Figures 1
and 2.

Figure 1. A "Before" View of Software Production

Figure 2.

An "After" View of Software Productfion

Towards Understanding Production Cost

It is probably not through sheer coincidence
alone that we use the word “program" for very
large software development projects. If put to
the test, we can find many similarities betvipen
the properties of the end item (i.e., the compu-
ter program) and the "program" or process through
which it was produced. We have labored long and
hard to develop technigues and tools [14,15,16,17,
18,19,20] which provide valuable insight
into the intricate and hLighly complex interactions
of the components of computer programs. lle have
rigorously applied such tools in the study of com-
puter program efficiency and have saved ccuntless
thousands of seconds of computer time. Unfortura-
tely, we have not done nearly so well in shaving
seconds off the time required for develcpment of
complex software systems. Perhaps it is time
that we seriously considered application of such
tools in investigation of the other kind cf pro-
grams. Maybe then we could begin to develop a
better understanding of how software really gets
put together and where, in the process, the high
cost of software truly lies and where efforts to
reduce excessive cost can and should be concentrat-
ed [21,2Z]

A Proposal

I am particularly intrigued with the poten-
tial application of program path analysis and
usage monitoring tools E23,24.25] to help achieve
a more thorough understanding of what really takes
place deep within the development process. 1
suggest, for example, that something alorg the
following lines could be done. First, we devise a
project (program) plan which possesses all the
conditional branching (go back and redo, etc.)
characteristics which are illustrated in the pre-
viously defined schematic labelled AFTER. Then,
as we think of the programmatic events much like
the segments or units of code within a program,
we may define a convenient notation and procedure
for developing path-1ike sequences which alone or
in combination represent potential modes of tra-
versing the network [25,26,27]. Now if we also
took steps to assign time-to-complete (17C) and
cost-to-complete {CTC) values to each of the ele-
ven previously identified events, it is possible
to estimate significant project cost and schedule

variations as a function of our "best guesses"
at the way project work will actually proceed.
We must be careful however to consider the
following:

1) TTC and CTC values are probably varia-
ble and are functions of many factors
including 1) state-of-the-art of the
specific technological area, 2) level
of experience and expertise of availa-
ble personnel, 3) event count (i.e.,
it may or may not be cheaper to write
detailed requirements for the third
time than for the second time), and
4) event predecessor relationships
(i.e., it may cost more (or less) to
revise or redevelop a preliminary de-
sign after extensive testing has been
completed than before).

2) Where appropriate perhaps in
accordance with existing procurement
regulations or customer-contractor
agreements) those branching character-
istics which are to be disallowed must
be taken into consideration. For exam-
ple, there is at least a common sense
requirement that test evaluation is not
followed by preliminary design more
than n times..

3) It may be important to avoid the prema-
ture conclusion that the path 1-2-3-4-
5-6-7-8-9-10-11 obviously presents the
most appealing cost picture, because it
may well be the most unrealistic path
in terms of potential development activ-
ity.

Finally, we might look briefly at one possi-
ble derivative of the approach briefly outlined
above. For example, consider the possibility of
a customer somewhere who:

1) has a problem to solve which requires
procured services for the production of a
software system, and

2) is willing and able to establish con-
straints of the type mentioned above in 2

We can then conceive of competitive contrac-
tors who submit proposals consisting of the usual
technical volume (i.e., background information,
statement of work, technical approach, related
experience, facilities, etc.). Consider, however,
a very different kind of management and cost vol-
ume which presents a predetermined number of cost
and schedule proposals corresponding to at least
the high likelihood paths through the network.
The availability of tools to support this kind of
effort is assumed, since I personally know of a
large number of computer program analysis tools
which would require only minor modification to
provide network analysis, path generation and dis-
play capabilities. These tools are described at

Tength in the literature primarily addressing
subjects of automating software testing, monitor-
ing and measuring the thoroughness of testing,
and static analysis of program structure [6,7,10,

50

14,18,19,23,24,25,26,27]. One might expect then
that we could readily acquire a capability to mon-
itor project-program operation and subsequently
compare expected-versus-actual operationul experi-
ence with life cycle costs.

Perhaps then if we:

1) develop and experiment with an approach
to procurement, program planning, cost es-
timation and performance assessment some-
thing like that described here,

2) use tools to maximum advantage to support
more objective yet precise consideration
of pertinent cost factors, and

3) try to be as honest as possible with each
other about what all this means,

then I expect we will begin to gain the kind
of insight needed in order to get a handle on and
do something about the real problems relevant to
the high cost of software development [28,29,30].
It is possible that, with practice, using the cost
modeling technique, we could get pretty good at
estimating at least upper and lower bounds on pro-
ject cost. It's possible also that in our quest
for truly improved software engineering practice
[29] the modeling technique can help us give more
careful attention to the real cost payoffs from
modern techniques and tools and further promote
their judicious and cost effective application to
future development activities. We might even be
able to stop talking about the good old days as if
they were some time in the past.

References

1. Gunning, Robert, How to Take the Fog Out of

Writing, Dartuell Press, Inc., Chicago, Ill.,
1962, 64 pages.

2. Hartman, P. H., and Owens, D. H., "How to
Write Software Specifications," Proceedings of
Fall Joint Computer Conference, 1967, pp. 779-
790.

3. Boehm, B. W., "Software and Its Impact: A
Quantitative Assessment,” Datamation, May 1973,
pp 48-59.

4. Boehm, B. W., Brown, J. R., et al., Character-

istics of Software Quality. TRW Series of Sutt

ware Technology #1, North Holland, January,

1978, (Previously published as TRW Technical

Report No. 25201-6001-TU-00, December, 1973).

5. Brown, J. R., DeSalvio, A. J., Heine, D. E.,
Purdy, J. G., "Automated Software Quality
Assurance: A Case Study of Three Systems,"
Program Test Methods (Ed. W. C. Hetzel), Pren-
tice-Hall, 1973, pp. 181-203.

6. Brown, J. R., and Hoffman, R. H., "Evaluating
the Effectiveness of Software Verification -
Practical Experience with an Automated Tool,"

q;ggeedings of Fall Joint Computer Conference,

10.

1.

12.

13.

14.

16.

18.

19.

Brown, J. R., "Improving Quality and Reducing
Cost of Aeronautical Systems Software through
Use of Tools," Proceedings of Air Force Aero-
nautical Systems Software Workshop, April,
1974.

Kosy, D. W., "Air Force Command and Control
Information Processing in the 1980's: Trends
in Software Technology," Rand Report No. R-
1012-PR, June, 1974.

Williams, R. D., "Managing the Development of
Reliable Software," Proceedings of the Inter-
national Conference on Reliable Software,
April, 1975, pp. 3-8.

Brown, J. R., "Getting Better Software Cheaper
and Quicker," Practical Strategies for Devel-
oping Large Software Systems, Addison-Wesiey,
1975, pp. 131-154.

Mangold, E. R., "Software Visibility and
Management: Technology," Proceedings of the
TRW Symposium on Reliable, Cost-Effective,
Secure Software, TRW-SS-74-14, March, 1974.

Boehm, B. W., "Software Engineering," IEEE

Transactions on Computers, Vol. C-25, No. 12,

December, 1976, pp 1226-1241.

Schluter, R. G., "Experience in Managing the
Development of Large Real-Time BMD Software
Systems,” Proceedings of AIAA/NASA/IEEE/ACM
Computers in Aerospace Conference, November,
1977, pp. 168-173.

Brown, J. R., "Software Test Tools: Techno-
logy," Proceedings of the TRW Symposium on
Reliable, Cost-Effective, Secure Software,
TRW-SS-74-14, March, 1974,

Brown, J. R., "Why Tools?," Proceedings of
Computer Science and Statistics: Eighth
Annual Symposium on the Interface, February,
1975, pp. 310-312.

Mullin, F. J., "Considerations for a Success-
ful Software Test Program," Proceedings of
ATAA/NASA/IEEE/ACM Computers in Aerospace
Conference, November, 1977, pp. 68-74.

Kessler, M. M. and Kister, W. E., "Software
Tool Impact," Structured Programming Series,
RADC-TR-74-300, Vol. XIV, May, 1975.

Osterweil, L. J., "A Methodology for Testing
Computer Programs," Proceedings of AIAA/NASA/
IEEE/ACM Computers in Aerospace Conference,
November, 1977, pp. 52-62.

Reifer, D. J., “Automated Aide for Reliable
Software," Proceedings of the International
Conference on Reliable Software, April, 1975,
pp. 131-342.

51

20.

21,

22,

23,

24,

25,

26.

27.

28.

29.

30.

Stucki, L. G., and Foshee, G. L., "New Asser-
tion Concepts for Self-Metric Software," Pro-
ceedings of the International Conference on
Reliable Software, April, 1975, pp. 131-142.

Black, R. K. E., "Effects of Modern Program-

ming Practices on Software Development Costs,"
Digest of Papers from the Fall Computer Con-

ggrence, COMPCON 77, September, 1977, pp. 250-
53.

Brown, J. R., "Modern Programming Practices in
Large Scale Software Development," Digest of
Papers from the Fall Computer Conference,
COMPCON 77, September, 1977, pp. 254-258.

Brown, J. R., and Hoffman, R. H., "Automating
Software Development: A Survey of Techniques
and Automated Tools," TRW-SS-72-03, May, 1972.

Brown, J. R., “Practical Applications of Auto-
mated Software Tools," WESCON 1972, Session 21
and TRW-SS-72-05, September, 1972.

Krause, K. W., Smith, R. W., and Goodwin, M. A,
"Optimal Software Test Planning through Auto-
mated Network Analysis," Proceedings of IEEE
Symposium on Computer Software Reliability,
June, 1973, pp. 18-22.

Brown, J. R., and Lipow, M., "Testing for Soft-
ware Reliability," Proceedings of the Interna-
tional Conference on Reliable Software, April,
1975, pp. 518-527.

Brown, J. R., ana Fischer, K. F., "A Graph
Theoretic Approach to the Verification of Pro-
gram Structures," Proceedings of the Third In-
ternational Conference on Software Engineering
May, 1978, pp. 136-141.

Sukert, A. N., "A Multi-Project Comparison of
Software Reliability Models," Proceedings of
ATAA/NASA/IEEE/ACM Computers in Aerospace Con-
ference, November, 1977, pp. 413-421.

Brown, J. R., "Programming Practices for In-
creased Software Quality," Software Quality
Management, Petrocelli Books, to be published
and presented at the Software Quality Manage-
ment Conference, September, 1978.

Brown, J. R., Osterweil, L. J., and Stucki, L.
G., "ASSET: A Lifecycle Verification and Visi-
bility System," Prcceedings of COMPSAC 78, to

be published, November, 1978.

IMPROVING THE SIGNAL/NOISE RATIO OF THE SYSTEM DEVELOPMENT PROCESS

Melyin L. Dickover

SofTech,
ABSTRACT

Some of the problems of major system develop-
ments can be traced to the lack of a rigorously
linked chain of documents connecting the operational
needs and context to the design given to the imple-
menters. A method of constructing such a rigorous
linkage using SADT® models is outlined in this
paper.

PROBLEM

Various problems have plagued the development
of 'irge military systems. Among these problems
is that the delivered system is not what the user
expected and is, in fact, nut very useful, even
though, in some sense, it works. Another problem
is that requirements seem to change rapidly during
development, either increasing cost and slipping
the schedule or decreasing the usability of the
product. The Department of Defense has been trying
to address these problems with new regulations
(CA-109, 5000.1, 5000.2, 5000.3, etc.); these regula-
tions will improve things. Some important holes
in the management process remain, however.

The approach to technical program management
taken in this paper assumes some of the troubles in
major system acquisitions are due to the following
causes:

V. Something gets lost in the t inslation from
stage to stage in the development process. "Noise"
accumulates until the product differs appreciably
from the user's original version of it. Current
military documentation regulations do not prevent
this, because they specify form rather than sub-
stance.

2. Many of what are called requirements changes
are in fact only requirements document changes
made necessary by the continual uncovering of old,
unchanged requirements not in the document because
the requirements definition process was inadequate.
1) 12)

QDSAOT is a trademark of SofTech, Inc.

Inc.
APPROACH

The two causes of the problem are addressed
by producing a chain of documents that link the
system user's conception of the system to an
abstract, implementation-free specification of the
system to be given to the implementer. The docu-
ments constrain the implementer to produce just
what the user needs, but leave him free to trade
off the alternative ways of realizing the system.

For this approach to succeed, the following
must be met:

1. The documents must be formally, rigorously
linked one to the next.

2. for each document in the chain, one must be
able to decide what information is or is not
supposed to be in it.

3. These documents must relate to the things
controlled in the major system acquisition process
that the DoD uses.

The documents proposed here are a linked set
of SADT models. (3} Before these documents are
described, it is necessary to provide a semiformal
definition of the terms used in the rest of the
paper.

DEFINITION FRAMEWORK

A snpcon is 3 set of interacting “phenomena”
of “actual reality." (Quotes indicate primitive
terms.)

St ' are predicates about "phenomena.™

Avencr are propositions about "phenomena.

A micl is a relation between a set of ;. ar”

and a set of .wwwere.

53

A mode! of a systen is a relation between a set
of questlons about 'phenomena" of the mode. and
answers about "phenomena" of the system to some
tolerance.

The ;urposc of a = dof is its set of e i,

In the definitions that follow, by model it is
meant a model produced using SADT. [3]

The o7 of a =i is the choice of parti-
tioning at the first level of the hierarchy. The
»fewr is constrained to be consistent with the

D,

The vanzae pofne of a mode! is a set of con-
straints placed on the »7.w so that it embodies
the abstractions and perceptions of a certain kind
of person. (Not only must the vicw satisfy the
rurrose, 1t must be formed of pieces a person
recognizes.)

A ey is a parn
interacts with the .
reality."”

« polne of a person who
ceas it exists in "actual

A functional model is a mode! of a systom
from the »/cw of a wuser of that syster,

An aerfvarion mde (of an SADT diagram) is a
Jogical expression stating the relation among
input, control, and output arrows.[4] The activa-
tiom rule states the conditions (presence or
absence of data) on the input, control, and output
arrows such that presence of data on the output
arrows will occur. Actipvation ruies transform
SADT diagrams into finite-state machine descriptions.

An cotipatioor is a path traced through a mode’
from its external input and control arrows to its
external output arrows, according to the ..eripqrion
e controlling each diagram of the »ocl.

A seenarico is a set of values applied to the
external arrows of a roJde! before tracing an
actinetion of the mode!.

A concept o cperation of a system is a mode!
conta1n1ng a functioned model of that system along
with Socetional modele of eystems it interacts
with. A coneept of cperations specifies the set of

all valid uctivations of a spater.

An cawple of @ concept of cperations s an
actioation of a coneept of operations for some
e .I’l ‘e

A dealgner is a vooitage point of a person who

choses at each hierarchical level of detail of a
model @ partitioning that results in the least
coupled pieces.

A design model of a custem is a fwictional
mode! of that system repartitioned from the vicw
of a desi:per. The functional model maps into, not

onto the dvuign mode’, since additional information
about the s.:tem may be incorporated in the . .~
mode S

Aopo il is a set of ot loaeloon e
applied to the ‘s’ m.J-! to constrain its set
of possible Jfffﬂd «x to be in the bounds descri-
bed in the “owetlon:’ mod-/, Some of these con-
straints are necessary to control the effects of
the additional information the i .’ »
contains.

THE CHAIN OF DOCUMENTS

The chain consists of the following documents:

Concept of operations, functional model,
design model, specification, as defined in the
previous section.

The coneept of operat’ons describes how a new
system will be used, together with the existing
resources and weapons, to get a net increase in
the overall effectiveness of the entire set of
resources. (Considered by itself, only system
performance can be measured. Considered in its con-
text, system effectiveness can be measured. The
concept of operations provides a purpose, view,
and context for a functional model. It binds
the document chain to the operational context.

The owstional model describes how the sys-
tem must behave and what it must be able to do
for its user. The user's requirements for speed,
accuracy, size, etc. are documented in the
functional model. Later this document will be
used by the implementer to understand the user's
"utility function" so implementation trade-offs
can be made to satisfy the user (rather than
vague ideas of efficiency). The functional model
binds the problem description to the operational
context.

The design redel describes the modular struc-
ture (logical structure) of the system to be built.
As defined above, it is the "simplest" description
of the system in terms of constantines "structured
design." [51,[6],[7] The functions in this model
are allocated to hardware or software according
to the trades made by the system engineers. The
structure constrains, but does not specify, the
algorithms to be used. This model binds problem
structure to solution structure.

The specification chooses the logic or algor-
ithms of the system to get the behavior required
by the functional model. The specification binds
solution behavior to problem behavior.

The design model and specification do not
include any properties of the hardware or soft-
ware used to implement the system. They do con-
strain the implementer to produce a system of a
certain structure and behavior, and guide trade-
offs among alternatives with a utility function
from the functional model.

PROBLEM SOLUTION IMPLEMENTATION

DESCRI- DESCRI- DESCRIPTION
PTION PTION

Required Capability why
Concept of Operation what why

Functional Model how what why
Design Model how what
Specification how

LINKS IN THE CHAIN

For the documents to form a chain, they must
be linked. These links are made in the SADT
models forming the chain. The SADT syntax pro-
vides a way of formally linking the models.

The concept of operations contains the
functional model embedded within it. The func-
tional model is, in a sense, a named subset of
the concept of operations, drawn from another
view. The design model is Tinked to the functional
model using the SADT mechanism syntax. Each func-
tion in the functional model contains a mechanism
"call" reference to the portion of the design
model that realizes that function. The design
model can, if desired, be annotated with SADT
support arrows which relate portions of the
design back to the functions in the functional
model. Thus, requirements traceability back
and forth from functional model to design is
maintained.

The specification is an annotation of the
design model. Thus no cracks between the models
that accumulate "noise" are permitted.

The argument to this point has relied some-
what on the properties of SADT models. However,
the concept is more general than that. It should
work for a modeling technique with the following
properties:

1. Describes modular structure, hierarchically.

2. Provides for traceability from model to
model.

3. Contains a way of specifying activations
in terms of output value "events" under some
input value "conditions."

SADCT has been used because it is a natural lan-
guage for describing system structure hierarchi-
cally. At each level, the pieces and their rela-
tions (dependencies) are expressed. The mechan-
ism syntax allows traceability between models.
Activation rules directly transform SADT models
into finite-state machine descriptions. And,

the language is a simple, graphic one.

As an illustration of how the mechanism nota-
tion can connect one model to the next, consider
the two SADT diagrams "communicate" and "handle
medium." Each diagram is the first level decom-~
position of a different model.

Box 3 on “"communicate" has a downward point-
ing mechanism arrow that calls the AO diagram of
model CHM. Thus the "Handle Medium" diagram
realizes a box in another model.

() g, CHANNEL o)
ADDRE S5, coomve
PRECEDENCE mErmop b-—ENCRYPTION KEY
)
ENCODE
”—T—" rom
CwanmweL |
MESSAGE S
REAOY TO
BE senr
ENCRYPT
ENCODED PARAMETERS
MESSAGE S 2 0F mMEpiom
HANDLE
EMCRYPTED mEDIuM
MESSAGES
pecrRyer | __
ENCRYPTED
MESSAGES “
RECEIVED MESSAGE S
RECEIVED
[4
ENCODED L cnanmEL J____',,,
MESSAGES bEcOOE
RECEVED
S, SEN—
TE A U
cont/ 10 QComMmyN 1CATE |

—

s

() MooduLATION
ff!(NNIaUE

b7l MODULATE

ENCRYPTED [
MEIIAGES

PARAMETERS
0F mEOWUM
(FREQUENCY, E7C)

EmT ——
MODULAT O
2

EMITTED
SIGNALS

NODE TITLE
CHM/AO HANDLE MEDIUM

DEMODULATE| o g g,

moouLArion -

e Y] tencryFTED
MESSACES
RECEWWED

T T (NUMEF R

ADEQUACY OF THE MODELS

To evaluate the adequacy of a model in the
chain, each model is associated with a deveiopment
test, as follows:

MODEL TEST MEANING
concept of exercise Is it useful?
operations
functional acceptance Does it work?
design integration Do the pieces

go together?
specification verification Are the pieces
correct?

A model is adequate if it can be used to
develop a plan for its corresponding test. For
users, the concept of operations is sufficient if
it can be used to outline an exercise that uses
the new system. More requirements are forced out
early in the process by consideration of details
of the test.

This criterion also suggests what should be
excluded from models. Information beyond that
necessary to construct the test should be viewed
with suspicion; it may be merely extraneous, it
may belong in a different model, and its inclusion
at this level may overconstrain the next level's
model. Not everything you know about a system
needs to be in the next document you write about
the system.

A MODEL OF THE CHAIN OF MODELS

The SADT diagrams of this section present a
model of a Naval system development from the view-
point of a Program manager. The diagrams are
annotated to show where the documents of the chain
can be used to help satisfy the requirements of
DSARC reviews that lead to formal milestone
decisions.

Each document of the chain appears at a dif-
ferent level of detail in the model. The concept
of operations appears at the first level on the
A0 diagram. The functional model appears at the
second level on the A3 diagram, and so on. All
of these diagrams (AQ, A3, A33) that describe a
document in the chain have the same form; each is
related to its corresponding test. Diagram A)
corresponds to the concept formulation stage in a
major system acquisition.

There are three reasons for including this
model: it gives a sample of an SADT model for
those unfamiliar with the method, it provides a
scheme for delegation of design authority, and it
provides a framework to discuss the order in which
the documents are produced in a rea® development.

The method of delegation of design authority

embodied in the model was inspired by Cowen [8].

At the operational level, "Build," Box 3, is uelega-~
ted, while authority for the other functions is
retained. Box 3 on A3 and A33 is similarly delega-
ted. Each level is responsible for a model in the
chain. Each delegation is accompanied by a con-
straint to similiarly delegate and constrain.

56
Responsibilities work out 1ike this: repeated, depending on how feasibilities work
out. Opportunities for subtle activation paths
abound. On Diagram Al, Box 3 has a mechanism
£ . support.arrow that indicates Diagram A3_(Bu11d)
concept of operations < may be invoked in the course of evaluating costs
functional model o and effectiveness. This could arise if it becomes
. necessary to buiid a feasibility demonstration
design model & v e of some risky part of the system to fully evaluate
specification « -] analyst an alternative.
s N l
implementation fcode‘ y Program system The model allows many alternate activation
unit test ¢ designer engineer | operators, paths and dynamic behavior patterns in system
verification < - i users development; however the documents produced at the
| end are constrained to relate to each other in a
integration test&———————— particular way.
acceptance test €—— . .) .
. in practice, an activation of this model may
exercise < begin with a functional model rather than a concept
of operations. Technologists may propose a functiona!
model of a new kind of system to find a use for a
The model shows the dependencies of a set of new technology. A concept of operations would be
activities and the documents they produce. It created for it, along with concepts of operations for
constrains, but does not specify, the exact order competing alternatives. A revision of the external
in which the development activities are carried details of the functional model would likely result,
out. For example, there are feedback loops on and a new functional model would then be created in
diagram AD that may cause activities to be depth.
D 1
J |
FISCAL € MANNING l5 REUDRED FAPRBiLIT1E~ § T HAER)
ANSI KR4I S o D ORI () (MaSNie Y p T
| T As T srrEMENT (DIENR))
" |
IR 2 2
|
DEVELQPT
— - S NEu — & - i P
CURRENT NAVY Svsrem LN sABLE NEw svarem
EVOLVING TECHNOLOGY l
o TN

FUREASE flescr.pe

/7((‘!")511(1/
viEwPoNT: | rogram Marager

NI ERS;
reg Jred (’/];’,))7,/117

ne, 40

R L o
DOCUPIENTZT 1 ON OHAN

AACCNENLaALorr Chait £ anlermte @ ale 1 oot s
P manage Sevesopmenr of new

Add ng new system 1o Navy inventovy Fo o acheve a

gstems

RV INNE T)
2y

e

57

PROBABLE FiISCAL

4 ManninG
CONSTRAINTS
Liwreasiariry, D) N
AMBIGUITY AMBIGYITY, - INNFEASIBILITY
FORMULATE INFEASI1BILITY
Ty
1 omERATIOmAL | @ QILESTONE L
ConeePT
CURMENT. 1
NAVY § Mo Y CONCEPT OF
EVOLYING Comeerr OF OPERATION
FECHNGL06Y OFERATION PLAN
OPERATIONAL DEFICIENCY
EXERCISE REPORTS
2 A 4
;.A‘ iounanmu.
TEST
CURRENT PRODUCY LINE [uuu‘nnh’
—J-J rcEsTONE I |
PHASE 1 (milestone 0 to Milestone I') o ‘}

im teate program {(crvalvalte eonceotval

a/ternatives) WORKABLE -~ MycEsrane
NEW PRODUCT S TEST ¢ N
PHASE 2 (Arhilestone I Fo Mlilestone 1) EVALUATE ~_,2
Pemonstrate and validate (develop L "
preferred trechn.ecal approach) T T UsSABLE NEW
IYSTreEM

PHASE 3 (Milestone IL fo Milestone uL)
Full- scale Pn,?;nrer,n rest Mmilestone JIr s the produet.on

(determine b¥st systém) and geployment decision

TITLE
' pejA0 [DEVELOP NEw SYSTEM
c2 cr 1
REQUIRED CAPABILITIES -AMBIGUITY, COmSrRAINTS
TNREAT DESCRIPTION INFEASIBILITY
JCS PROMULGRTED (mews § 4-109) N
o
22271171;55 . MIsSI0N, SUCCESS
T CRITERIA
POSTULATE "W
INEELS1BILITY
™, NG
7 scemario | scemagios s d
’
CUXRENT § IR
EVoLyInG
TECHNOLOGY ComncEPT(s) FiscAL
ar con-)
8 O rionts) STAMAT), OTHER COnsiDERA
SSEN— < L rions (rRADITI0N'S,
OPERATIONAL Pﬂt/f’(&l Human
comecEPrTS FACTORS, Risns)
DESCRIFPTION OF
CURRENT NVAVY
EVALUATE
NAVY COST PTODEC . cosrs ¢ SecECT o1
S ___J ,—_‘[‘FEC’IVENESS e
K] COnNCEPT OF
- T Oregdrion,
NOre: 7This dragram /s phase 1 EVALUATED RECHMMENDATION
bejAy - ALTERNATIVE 70 D3aRC For
CONCERPrS aF Price sromE I
NPERAYIONS 1'Eeision
- T T T ME -) - T T -
Dpe /AL /ORMULATE OPERATIONAL Coned 1T mMn e 1

De/ass

- e T T T T T T T T T N N
ENGITEER § FABRICATE ey i

€z ¢z
DEFICIENCY
REPORTS — d-concerr o oPErATION
IMPLEMENTATION
KumcrionAL o DEFICIENCY REPORT
DEFICIENCY
RepoRT AMBIGUIT v;' . ?
:
INFEASIBILITY INFEASIBILITY INFEASIBILITY N
u aNALYZE —3 »o1
FUNCTIONS
, -) INFEASIBILITY
PrODUCT AmBisviry]
LNE FuwcriomvAL ey [
mooeEL, PLAN DEVELOPMENT
REQUIREMENTS, DEVELOPMENT YEST PLAN
DEsien TEST
CONSTRAINTS 2
Ercy
DEvELOPMEN T paisiiised}
TEST PLAN
ENGINEER &
—
CoRRENT SHELE /Tems D FABRICATE
]
mos
£ -
NEW SYST DEMONSTRATE]
§ VAUDATE p » o2
¥
CworndaLs
mEW
SysTENMS
TITLE L1313
De/As guiLp mb oy
FUNCTIONAL L c2
mooee., T« DEFICIENCY REPORTS
REQUIREMENTS,
DESIGN —_—
CONSTRAINTS r INFEASIBILITY
W l ya INFEASIBILITY
11 vesian ¢ oL
| SPECIFY
cveeenr ‘.
SHELE e
irams DEsteN MODEL
SPECIFICATION PLAN AMBIGYIT s
¢ HARDwARE/ INTEGRATION | insaasioicsr AN
SoFTwARE resr « 4
PARTiTIONING 2
DEFCIENCY
Y REPORT S
J— e Maxe
NOTE . “MAKE "~ BOK 3, HAS Two HARDWARE, INTEGRATE
INCARNATIONS, ONE SOFTWARE,
SOFTWARE, ONE HARDUWARE . PilCEs OF VERIFY o - P02
PROpUCT R ¥
- - NEW PRODUCT
AvarEm

59

L cz
FUNCTIONAL MopEL,
REQUIREMENTS, DEFICIENCY REPORTS, I1NFEA3IBILITY
besion com’”‘””‘"ﬁ P

a ™
Funerionmar
MooveL
DesionN REQUIREMENTS
MOOULAR
STRUCTURE PERFORMANCE
! REQUIREMENTS,

OEIIGN MODEL
(STRUCTURE OF

riEcEs § SPECIFY
INTERFACES) ALGOR I THMIC
BEHAVIOR

DESION MoDEL
wirH
SPECIFICATION

NEEASI1BILIT
MAKE ! s Y

HAROWARE/ o1
CURRENT JHELFl/rzms SOFTWALE
I1 TRAGES | 02
BDESIGN MODEL,
SPECIEICATION,
HARDWARE/
SOFTWARE
FARTITIONING
TITLE L L]
DCJA33I DESIGN § SPECIFY moé 1

CONCLUSIONS

By establishing a rigorously linked chain of
documents connecting requirements in their opera-
tional context to a specification of what the
implementer must build, the accumulation of noise
in the process is prevented.

By introducing a test for the adequacy of
each model, more requirements are forced out
early in the process, and attention is focused
earlier on feasibility issues.

Tnis method has not been tried. However,
SADT has been used to construct a Concept of
Operations. A functional mode) has been built
and transformed into a design model [9]. As yet,
no design model has been completely turned into
a specification using activation rules; for
various reasons other specification languages
(e.g. programming languages), have been used.
The author intends to try the technique on a
software development in the near future.

REFERENCES

1. Ross, D.T., Quality Starts with Requirements
Definition. P.G. Hibbard and S.A. Schoman
Eds. North Holland Pub. Co., 1978, pp. 397-406.

2. Ross, D.T. and Schoman, K.E., Structured
Analysis for Requirements Definition. I1EEE
Trans. on Software Engineering, 3. 1, 1377,
pp. 6-T5

3. Ross, D.T., Structured Analysis:
for Communicating Ideas.
Software Engineering, 3. 1,

A Language

IEEE Trans. on
» PP.

6-34.

4. Dickover, M.E., McGowan, C.L., Ross, D.T.,
Software Design Using SADT, Infotech State of

the Art Report: Structured Design,

Maidenhead, Infotech International Ltd, 1978.
5. Yourdon, E. and Constantine, L.L.: Structured

Design. Yourdon, Inc., New York, 1975.

6. Dickover, M.E., Principies of Coupling and
Cohesion for Use in the Practice of §gDT.
SofTech, Inc., WaTtham, Mass., Technical
Publication #039, 1976.

7. Alexander, C., Notes on the Synthesis of Form,
Cambridge, Harvard University Press, 1964,

8. Cowan, G. Jr., A General Structure for
Resource Management in a Computer Network.
PhD. Thesis, Madison: Univ. of Wisconsin,
1975.

9. Dickover, M.E. and Small, A., Analyzing and
Designing an EW Reprogramming System,
Proceedings of the 41st Symposium of the
MiTitary Operations Research Society, July
1978.

ACKNOWL EDGEMENT

The ideas in this paper were developed during
work for Dr. Michael Melich of the Naval Research
Laboratory. Many hours of discussion with him Jed
to these ideas, and his encouragement was respon-
sible for their development. The Structured
Analysis and Design Technique (SADT - a trademark
of SofTech, Inc.} was devised by Douglas T. Ross.

A STEP TOWARDS THE OBSOLESCENCE OF PROGRAMMING

Rarvey S. Koch

University of Rochester
Graduate School of Management
Rochester, New York 14627

Abstract The systems analyst usually specifies the

operations to be performed on each data field.

One of the most difficult aspects of An example of the specifications are:

software development 1is transforming the systems
analyst's specifications into process specifi- 1

Date
cations that can be understood and carried out i
by a computer. We describe a method in this a. check whether date is current
paper that can be used to reduce the complexity b. calculate interest if not already

of the programmer's task and to ensure a higher
degree of correlation between the systems

analyst's specifications and the program 2. Bank Office
produced for the application.

done for previous period(s)

a. check whether valid
3, Teller

a. check whether <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>